• 제목/요약/키워드: Passive systems

검색결과 1,062건 처리시간 0.027초

로봇발전과 기구학의 역할 (The Role of Kinematics in Robot Development)

  • 염영일
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.

분산 수동속도장 제어법을 이용한 다중 AGV 시스템의 협조 이송제어 (A Cooperative Object-Transportation Control of Multiple AGV Systems using Decentralized Passive Velocity Field Control Algorithm)

  • 서진호;김영복;이권순
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권6호
    • /
    • pp.261-263
    • /
    • 2006
  • Automatic guided vehicle(AGV) in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control scheme based on virtual-passivity. It is shown that the cooperative AGV systems ensure stability and the convergence to scaled multiple of each desired velocity field for multiple AGV systems. Finally, the application of p reposed virtual passivity-based decentralized control algorithm via system augmentation is applied to be the tracking a circle. Also, the simulation results for the object-transportation by two AGV systems illustrate the validity of the proposed control scheme.

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo;Choi, Kang-Min;Park, Kyu-Sik;Cho, Sang-Won
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.385-403
    • /
    • 2007
  • The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.

이차피동냉각시스템의 열교환기 설계를 위한 응축열전달 상관식 연구 (Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System)

  • 주윤재;강한옥;이태호;박천태;이희준
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1069-1078
    • /
    • 2013
  • 최근 원자로 시스템에서 응축열교환기를 이용한 피동안전냉각 개념이 활발히 연구되고 있다. 이차피동냉각시스템의 수직형 응축열교환기 설계를 위하여, 열적 크기 산정 프로그램(TSCON)을 구현하고 검증하였다. TSCON 검증을 위해 이차피동냉각시스템 응축열교환기 실험에서 수집된 1,157 개의 순수증기 응축열전달 실험데이터를 현존하는 응축열전달 상관식들을 이용하여 비교 검증하였다. 그 결과 2009년 Shah 에 의해 출판된 응축열전달 상관식이 수집된 실험데이터를 34.8% 오차로 예측하는 것으로 계산되었으며, TSCON 의 응축열전달 상관식으로서 적합한 것으로 나타났다.

이동 에이전트 시스템을 위한 효율적인 중복 프로토콜 (Efficient Replication Protocols for Mobile Agent Systems)

  • 안진호
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권12호
    • /
    • pp.907-917
    • /
    • 2006
  • 본 논문에서는 각 중복서비스의 수행형태가 결정적이냐 비결정적이냐에 따라 알맞은 수동형중복 프로토콜을 적용함으로써 이동 에이전트 시스템에서 중복 서비스의 결함포용성과 확장성을 향상시키는 새로운 전략을 제안한다. 이러한 목적을 위해 두 개의 수동형 중복 프로토콜들인 PRPNS과 PRPDS를 각각 비결정적 중복 서비스와 결정적 중복 서비스를 위해 설계한다. 이 두 프로토콜들은 모두 방문 이동 에이전트들이 반드시 주 서비스 에이전트만이 아니라 보조 서비스 에이전트를 수행하는 임의의 노드로 전달되어 수행될 수 있도록 한다. 특히, 프로토콜 PRPDS는 임의의 보조 서비스 에이전트가 이동 에이전트 요구 메시지를 수신하고, 주 서비스 에이전트로부터 그 요구 메시지의 전달 일련번호를 얻은 후에, 그 보조 서비스 에이전트가 해당 요구 메시지를 처리하고 다른 중복 서비스 에이전트들과의 조정역할을 할 수 있도록 한다. 따라서, 이 두 프로토콜들을 사용하는 본 논문의 전략은 이동 에이전트 시스템에서 매우 많은 수의 이동 에이전트들이 동시에 접근하고자 하는 중복서비스의 높은 확장성을 보장할 수 있다. 본 시뮬레이션 결과는 제안된 전략이 기존의 수동형 중복프로토콜만을 사용하는 전략에 비해 매우 향상된 성능을 발휘한다는 것을 보여준다.

소형 무인기 탐지를 위한 패시브 레이더망 최적 배치 연구 (Study on the Optimal Deployment of the Passive Radar System for Detecting Small Unmanned Aerial Vehicles)

  • 백인선;이태식
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.443-452
    • /
    • 2016
  • Current low-altitude radar system often fails to detect small unmanned aerial vehicles (UAV) because of their small radar cross section (RCS) compared with larger targets. As a potential alternative, a passive bistatic radar system has been considered. We study an optimal deployment problem for the passive bistatic radar system. We model this problem as a covering problem, and develop an integer programming model. The objective of the model is to maximize coverage of a passive bistatic radar system. Our model takes into account factors specific to a bistatic radar system, including bistatic RCS and transmitter-receiver pair coverage. Considering bistatic RCS instead of constant RCS is important because the slight difference of RCS value for small UAVs could significantly influence the detection probability. The paired radar coverage is defined by using the concept of gradual coverage and cooperative coverage to represent a realistic environment.

초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템 (Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes)

  • 박종현;추영열
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

수동 RFID 기반 이동로봇 위치 추정 및 효율적 노면 태그 배치 (Passive RFID Based Mobile Robot Localization and Effective Floor Tag Arrangement)

  • 김성복;이상협
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1294-1301
    • /
    • 2008
  • Under passive RFID environment, this paper presents a new localization of a mobile robot traversing over the floor covered with tags, which is superior to existing methods in terms of estimation performance and cost effectiveness. Basically, it is assumed that a mobile robot is traveling along a series of straight line segments, each segment at a certain constant velocity, and that the number of tags sensed by a mobile robot at each sampling instant is at most one. First, for a given line segment with known starting point, the velocity and position of a mobile robot is estimated using the spatial and temporal information acquired from the traversed tag. Some discussions are made on the validity of the basic assumptions and the localization for the initial segment with unknown starting point. Second, for a given tag distribution density, the optimal tag arrangement is considered to reduce the position estimation error as well as to make easy the tag attachment on the floor. After reviewing typical tag arrangements, the pseudorandom tag arrangement is devised inspired from the Sudoku puzzle, a number placement puzzle. Third, through experiments using our passive RFID localization system, the validity and performance of the mobile robot localization proposed in this paper is demonstrated.

Conceptual Design of Passive Containment Cooling System for Concrete Containment

  • Lee, Seong-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.358-363
    • /
    • 1995
  • A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.

  • PDF