• 제목/요약/키워드: Passive structure

검색결과 775건 처리시간 0.036초

Refined optimal passive control of buffeting-induced wind loading of a suspension bridge

  • Domaneschi, M.;Martinelli, L.
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.1-20
    • /
    • 2014
  • Modern design of long suspension bridges must satisfy at the same time spanning very long distances and limiting their response against several external loads, even if of high intensity. Structural Control, with the solutions it provides, can offer a reliable contribution to limit internal forces and deformations in structural elements when extreme events occur. This positive aspect is very interesting when the dimensions of the structure are large. Herein, an updated numerical model of an existing suspension bridge is developed in a commercial finite element work frame, starting from original data. This model is used to reevaluate an optimization procedure for a passive control strategy, already proven effective with a simplified model of the buffeting wind forces. Such optimization procedure, previously implemented with a quasi-steady model of the buffeting excitation, is here reevaluated adopting a more refined version of the wind-structure interaction forces in which wind actions are applied on the towers and the cables considering drag forces only. For the deck a more refined formulation, based on the use of indicial functions, is adopted to reflect coupling with the bridge orientation and motion. It is shown that there is no variation of the previously identified optimal passive configuration.

플랩 블레이드를 이용한 조류 터빈의 부하 저감에 대한 연구 (Study on Load Reduction of a Tidal Steam Turbine Using a Flapped Blade)

  • 정다솜;고진환
    • Ocean and Polar Research
    • /
    • 제42권4호
    • /
    • pp.293-301
    • /
    • 2020
  • Blades of tidal stream turbines have to sustain many different loads during operation in the underwater environment, so securing their structural safety is a key issue. In this study, we focused on periodic loads due to wave orbital motion and propose a load reduction method with a blade design. The flap of an airplane wing is a well-known structure designed to increase lift, and it can also change the load distribution on the wing through deflection. For this reason, we adopted a passive flap structure for the load reduction and investigated its effectiveness by an analytical method based on the blade element moment theory. Flap torsional stiffness required for the design of the passive flap can be obtained by calculating the flap moment based on the analytic method. Comparison between a flapped and a fixed blade showed the effect of the flap on load reduction in a high amplitude wave condition.

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

강도저항형 코어와 프레임 구조의 진동주기차를 이용한 듀얼프레임 제진시스템의 응답특성 (Response Characteristic of the Dual-frame Passive Control System with the Natural Period Difference between the Strength Resistant Core and Frame Structure)

  • 김태경;최광용;오상훈;유홍식
    • 한국지진공학회논문집
    • /
    • 제19권6호
    • /
    • pp.273-282
    • /
    • 2015
  • In this study, shaking table test has been carried out for the dual frame passive control system for seismic performance verification of the proposed system. The proposed system was separated into two independent frameworks that are strength resistant core and frame structure by connecting to the damper. Moreover, the seismic performance improvement of the proposed system has been verified by comparing and analyzing the experimental results of the proposed system with an existing core system. As a result of the shaking table test, acceleration and displacement responses of dual-frame vibration control system are decreased than those of the existing strength resistant type core system. In the case of the core system, while the damage was concentrated on the column of first floor, the damage of the dual system was dispersed in each layer. The damage also was concentrated on the damper, almost no damage occurs to the structural members. It has been emphasized that installed dampers in the proposed dual system reduce the input energy of whole structure by absorbing seismic input energy, which leads overall system damage to be reduced.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

초기 유도용 수동추적 필터 (A passive tracking filter in a capture guidance mode)

  • 엄태윤;안조영;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.99-104
    • /
    • 1989
  • A practical filter is suggested for ground-Dasea missile tracking in a capture guidance mode, utilizing angle-only measurements from a passive sensor and its performance is evaluated by a realistic system simulation study. Also suggested is a missile acceleration model that provides inputs to the filter. The suggested filter has a decoupled structure of independent azimuth and elevation channels with efficiency in commutation time and memory requirements.

  • PDF

해상통신 시스템 응용을 위한 초소형 RF 수동소자의 개발 (development of Miniaturized RF Passive Components for Application Marine Communication System.)

  • 이동환;김충열;박영배;이경식;윤영
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.63-64
    • /
    • 2005
  • This paper proposed a miniaturization passive element employing the multiple microstrip line. As a result of this method, we realized the transmission line miniaturized. The applying structure designed and evaluated a power divider on GaAS MMIC circuit. It draws a plan in a center Frequency as the observation could do good characteristic.

  • PDF

An Implementation of Stabilizing Controller for 2-Axis Platform using Adaptive Fuzzy Control and DSP

  • Ryu, Gi-Seok;Kim, Jin-Kyu;Park, Jang-Ho;Kim, Dae-Young;Kim, Jong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.71.3-71
    • /
    • 2001
  • Passive Stabilization method and active stabilization method are mainly used to comprise a control system of platform stabilizer. Passive Stabilization method has demerits because of size and weight except that control structure is simple while active stabilization method using sensors can reduce size and weight, it requires high sensor technique and control algorithm. In this paper, a stabilizing controller using adaptive fuzzy control technique and floating-point processor(DSP) is suggested.

  • PDF

확산길이에 따른 수동식 유기용제 시료채취기의 시료채취성능에 관한 연구 (Sampling Efficiency of Organic Vapor Passive Samplers by Diffusive Length)

  • 이병규;장재길;정지연
    • 한국환경보건학회지
    • /
    • 제35권6호
    • /
    • pp.500-509
    • /
    • 2009
  • Passive samplers have been used for many years for the sampling of organic vapors in work environment atmospheres. Currently, all passive samplers used in domestic occupational monitoring are foreign products. This study was performed to evaluate variable parameters for the development of passive organic samplers, which include the geometry of the device and diffusive length for the sampler design. Four prototype diffusive lengths; A-1(4.5 mm), A-2(7.0 mm), A-3(9.5 mm), A-4(12.0 mm) were tested for adsorption performances to a chemical mixture (benzene, toluene, trichloroethylene, and n-hexane) according to the US-OSHA's evaluation protocol. A dynamic vapor exposure chamber developed and verified by related research was used for this study. The results of study are as follows. The results in terms of sampling rate and recommended sampling time test indicate that the most suitable model was A-3 (9.5 mm diffusive lengths on both sides) for passive sampler design in time weighted average (TWA) assessment. Sampling rates of this A-3 model were 45.8, 41.5, 41.4, and 40.3 ml/min for benzene, toluene, trichloroethylene, and n-hexane, respectively. The A-3 models were tested on reverse diffusion and conditions of low humidity air (35% RH) and low concentrations (0.2 times of TLV). These conditions had no affect on the diffusion capacity of samplers. In conclusion, the most suitable design parameters of passive sampler are: 1) Geometry and structure - 25 mm diameter and 490 $mm^2$ cross sectional area of diffusion face with cylindrical form of two-sided opposite diffusion direction; 2) Diffusive length - 9.5 mm in both faces; 3) Amount of adsorbent - 300 mg of coconut shell charcoal; 4) Wind screen - using nylon net filters (11 ${\mu}m$ pore size).

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.