• Title/Summary/Keyword: Passive flux meter

Search Result 2, Processing Time 0.015 seconds

Comparison between Passive Flux Meters and Borehole Dilution Tests to Estimate Groundwater Flux in a Karst Aquifer (플럭스미터와 단공희석시험을 이용한 카르스트 대수층 내 지하수 플럭스 측정 비교)

  • Lee, Juyeon;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.543-552
    • /
    • 2020
  • In this study, we measured groundwater fluxes with a passive flux meter and a borehole dilution test in the Upper Floridan Aquifer. In addition, the feasibility of the passive flux meter is also evaluated within matrix and non-matrix zones. The results of the PFM (5.96 ± 1.75 cm/day) showed good agreement with those of the BHD (4.68 ± 2.99 cm/day) in matrix zones, whereas the results of the PFM (9.94 ± 0.90 cm/day) showed poor agreement with those of the BHD (1817.37 ± 1795.50 cm/day) in non-matrix zones. We assumed that the groundwater passes through the sorbent material inside the PFM. However, it could not pass through the sorbent when the groundwater flux is faster than 11 cm/day. The flow might bypass between monitoring well and the PFM. The PFM used in this study might be suitable for measuring the groundwater fluxes under 11 cm/day. Therefore, more extensive research is needed in the future to measure fast groundwater fluxes (> 11 cm/day).

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.