• Title/Summary/Keyword: Passive Microwave Remote Sensing

Search Result 31, Processing Time 0.028 seconds

MERITS OF COMBINATION OF ACTIVE AND PASSIVE MICROWAVE SENSORS FOR DEVELOPING ALGORITHMS OF SST AND SURFACE WIND SPEED

  • Shibata, Akira;Murakami, Hiroshi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.138-141
    • /
    • 2006
  • In developing algorithms to retrieve the sea surface temperature (SST) and sea surface wind speed from the Advanced Microwave Scanning Radiometer (AMSR) aboard the AQUA and the Advanced Earth Observation Satellite-II (ADEOS-II), data from the SeaWinds aboard ADEOS-II were helpful. Since features of the ocean microwave emission (Tb) related with ocean wind are not well understood, in case of using only AMSR data, combination of AMSR and SeaWinds revealed pronounced features about the ocean Tb. Two results from combinations of the two sensors were shown in this paper. One result was obtained at wind speeds over about 6m/s, in which the ocean Tb varies with the air-sea temperature difference, even though the SeaWinds wind speed is fixed at the same values. The ocean Tb increases as the air-sea temperature difference becomes negative, i.e., the boundary condition becomes unstable. This result indicates that the air temperature should be included in AMSR SST algorithm. The second result was obtained from comparison of two wind speeds between AMSR and SeaWinds. There is a small difference of two wind speeds, which might be related with several mechanisms, such as evaporation and plankton.

  • PDF

EFFECTS OF ATMOSPHERIC WATER AND SURFACE WIND ON PASSIVE MICROWAVE RETRIEVALS OF SEA ICE CONCENTRATION: A SIMULATION STUDY

  • Shin, Dong-Bin;Chiu, Long S.;Clemente-Colon, Pablo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.892-895
    • /
    • 2006
  • The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water and water vapor and surface wind on surface emissivity on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor’s field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric and surface effects tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. In particular, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations over marginal ice zones.

  • PDF

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.

RAINFALL FROM TRMM-RADAR AND RADIOMETER

  • Park, K.W.;Kim, Y.S.;Gairola, R.M.;Kwon, B.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.528-530
    • /
    • 2003
  • We present here, some of the studies carried for estimation of rainfall over land and oceanic regions in and around South Korea. We use active and passive microwave measurements from TRMM ? TMI and Precipitation Radar (PR) respectively during a typhoon even named ? RUSA that took place during 30 Aug. 2002. We have followed due approach by Yao at. all (2002) and examined the performance of their algorithm using two main predictor variable, named as Scattering Index (SI) and Polarization Corrected Brightness Temperature (PCT) while using TMI data. The rainfall fnus estimated using PST and SI shows some Underestimation as compared to the 2A25 rainfall products from the PR in common area of overlap. A larger database thus would be used in future. To establish a new rain rate algorithm over Korean region based on the present case study.

  • PDF

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

Analysis of Sea Route to the Jangbogo Antarctic Research Station by using Passive Microwave Sea Ice Concentration Data (수동 마이크로파 해빙 면적비 자료를 이용한 남극 장보고 과학기지로의 항해경로 분석)

  • Kim, Yeonchun;Ji, Yeonghun;Han, Hyangsun;Lee, Joohan;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.677-686
    • /
    • 2014
  • Sea ice covers wide area in Terra Nova Bay in East Antarctica where the Jangbogo Antarctic Research Station was built in 2014, which affects greatly on the sailing of an icebreaker research vessel. In this study, we analyzed the optimum sea route and sailable period of the icebreaker to visit the Jangbogo Antarctic Research Station by using sea ice concentration data observed by passive microwave sensors such as Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) for the last decade, and by using sea route of the Araon, an icebreaker of Republic of Korea, from 2010 to 2012. It is found that Araon sailed in the route of sea ice concentration up to 78%. Sailing speed of the Araon decreased due to increasing sea ice concentration. However, Araon maintained the speed close to the average speed for the entire sailing period (~11 kn) in the route of sea ice concentration up to 70%. Therefore, we confirm that the Araon can sail typically in the route which shows sea ice concentration below 70%. We derived annually available sailing period in recent 10 years for the sea route of the Araon in 2010, 2011 and 2012, which is defined as the period showing sea ice concentration below 70% through the route. Maximum sailable period was analyzed to be 61 and 62 days for the route of the Araon in 2010 and 2011, respectively. However, the typical sailing in the routes was unavailable in some years because sea ice concentration was higher than 70% through the routes. Meanwhile, the sailable period for the routes of the Araon in 2012 was observed in every year, which was a minimum of 15 days and is a maximum of 89 days. Therefore, we could suggest that optimum route of icebreaker to visit the Jangbogo Antarctic Research Station is the route of the Araon in 2012. High resolution images from SAR or optical sensors are necessary to investigate sea ice condition near shoreline of Jangbogo research station due to several kilometers of low resolution of sea ice concentration.

CONSTRUCTION OF AMSR-E LEVEL-1 PROCESSOR AND RETRIEVAL OF OCEAN PARAMETERS

  • Kim, Seung-Bum;Shin, Ji-Hyun;Im, Yong-Jo;Shin, Ji-Hyun;Park, Sung-Oak;Park, Seung-Hwan;Lee, Jong-Ju;Kim, Moon-Gyu;Park, Hae-Suk;Kim, Keum-Ran
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.828-830
    • /
    • 2003
  • We have constructed a level-1 processor to generate brightness temperatures using the direct-broadcast data from the passive microwave radiometer onboard Aqua satellite. Although 50-minute half-orbit data, called a granule, are being routinely produced, to our knowledge, this is the first attempt to process about 10-minute long direct-broadcast data. We modified the processor designed for a granule to process the direct-broadcast data. After the modification, our brightness temperature product differs from the reference by 0.2K rms. Sea surface temperatures are retrieved to demonstrate the utility of AMSR-E.

  • PDF

Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data (Sentinel-1 SAR 데이터를 이용한 우리나라 농지의 토양수분 산출 실험)

  • Lee, Soo-Jin;Hong, Sungwook;Cho, Jaeil;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.947-960
    • /
    • 2017
  • Soil moisture plays an important role to affect the Earth's radiative energy balance and water cycle. In general, satellite observations are useful for estimating the soil moisture content. Passive microwave satellites have an advantage of direct sensitivity on surface soil moisture. However, their coarse spatial resolutions (10-36 km) are not suitable for regional-scale hydrological applications. Meanwhile, in-situ ground observations of point-based soil moisture content have the disadvantage of spatially discontinuous information. This paper presents an experimental soil moisture retrieval using Sentinel-1 SAR (Synthetic Aperture Radar) with 10m spatial resolution for cropland in South Korea. We developed a soil moisture retrieval algorithm based on the technique of linear regression and SVR (support vector regression) using the ground observations at five in-situ sites and Sentinel-1 SAR data from April to October in 2015-2017 period. Our results showed the polarization dependency on the different soil sensitivities at backscattered signals, but no polarization dependence on the accuracies. No particular seasonal characteristics of the soil moisture retrieval imply that soil moisture is generally more affected by hydro-meteorology and land surface characteristics than by phenological factors. At the narrower range of incidence angles, the relationship between the backscattered signal and soil moisture content was more distinct because the decreasing surface interference increased the retrieval accuracies under the condition of evenly distributed soil moisture (during the raining period or on the paddy field). We had an overall error estimate of RMSE (root mean square error) of approximately 6.5%. Our soil moisture retrieval algorithm will be improved if the effects of surface roughness, geomorphology, and soil properties would be considered in the future works.

A Study on the Radiometric Correction of Sentinel-1 HV Data for Arctic Sea Ice Detection (북극해 해빙 탐지를 위한 Sentinel-1 HV자료의 방사보정 연구)

  • Kim, Yunjee;Kim, Duk-jin;Kwon, Ui-Jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1273-1282
    • /
    • 2018
  • Recently, active research on the Arctic Ocean has been conducted due to the influence of global warming and new Arctic ship route. Although previous studies already calculated quantitative extent of sea ice using passive microwave radiometers, melting at the edge of sea ice and surface roughness were hardly considered due to low spatial resolution. Since Sentienl-1A/B data in Extended Wide (EW) mode are being distributed as free of charge and bulk data for Arctic sea can be generated during a short period, the entire Arctic sea ice data can be covered in high spatial resolution by mosaicking bulk data. However, Sentinel-1A/B data in EW mode, especially in HV polarization, needs significant radiometric correction for further classification. Thus, in this study, we developed algorithms that can correct thermal noise and scalloping effects, and confirmed that Arctic sea ice and open-water were well classified using the corrected dual-polarization SAR data.

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.