• Title/Summary/Keyword: Passivation quality

Search Result 62, Processing Time 0.025 seconds

Quantitative analysis of formation of oxide phases between SiO2 and InSb

  • Lee, Jae-Yel;Park, Se-Hun;Kim, Jung-Sub;Yang, Chang-Jae;Kim, Su-Jin;Seok, Chul-Kyun;Park, Jin-Sub;Yoon, Eui-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.162-162
    • /
    • 2010
  • InSb has received great attentions as a promising candidate for the active layer of infrared photodetectors due to the well matched band gap for the detection of $3{\sim}5\;{\mu}m$ infrared (IR) wavelength and high electron mobility (106 cm2/Vs at 77 K). In the fabrication of InSb photodetectors, passivation step to suppress dark currents is the key process and intensive studies were conducted to deposit the high quality passivation layers on InSb. Silicon dioxide (SiO2), silicon nitride (Si3N4) and anodic oxide have been investigated as passivation layers and SiO2 is generally used in recent InSb detector fabrication technology due to its better interface properties than other candidates. However, even in SiO2, indium oxide and antimony oxide formation at SiO2/InSb interface has been a critical problem and these oxides prevent the further improvement of interface properties. Also, the mechanisms for the formation of interface phases are still not fully understood. In this study, we report the quantitative analysis of indium and antimony oxide formation at SiO2/InSb interface during plasma enhanced chemical vapor deposition at various growth temperatures and subsequent heat treatments. 30 nm-thick SiO2 layers were deposited on InSb at 120, 160, 200, 240 and $300^{\circ}C$, and analyzed by X-ray photoelectron spectroscopy (XPS). With increasing deposition temperature, contents of indium and antimony oxides were also increased due to the enhanced diffusion. In addition, the sample deposited at $120^{\circ}C$ was annealed at $300^{\circ}C$ for 10 and 30 min and the contents of interfacial oxides were analyzed. Compared to as-grown samples, annealed sample showed lower contents of antimony oxide. This result implies that reduction process of antimony oxide to elemental antimony occurred at the interface more actively than as-grown samples.

  • PDF

Controllable Etching of 2-Dimentional Hexagonal Boron Nitride by Using Oxygen Capacitively Coupled Plasma

  • Qu, Deshun;Yoo, Won Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.170-170
    • /
    • 2013
  • We present a novel etching technique for 2-dimentional (2-D) hexagonal boron nitride (h-BN) by using capacitively coupled plasma (CCP) of oxygen combined with a post-treatment by de-ionized (DI) water. Oxygen CCP etching process for h-BN has been systematically studied. It is found that a passivation layer was generated to obstruct further etching while it can be easily and radically removed by DI water. An essential cleaning effect also has been observed in the etching process, organic residues are successfully removed and the surface roughness has much decreased. Considering h-BN is the most important 2-D dielectric material and its potential application for graphene to silicon-based electronic devices, such an etching method can be widely used to control the 2-D h-BN thickness and improve the surface quality.

  • PDF

Synthesis and Optically Characterization of CdSe Nanocrystal (CdSe 나노입자의 합성과 광학 특징)

  • Kim, Chanyoung;Kim, Sunghyun;Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.1 no.3
    • /
    • pp.250-253
    • /
    • 2008
  • New issues arise as to surface characterization, quantification and interface formation. Surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. Semiconductor quantum dots (QDs) have been the subject of much interest for both fundamental reseach and technical applications in recent years, due mainly to their strong size dependent properties and excellent chemical processibility. In this dissertation, the synthesis of CdSe quantum dots were synthesized by pyrolysis of high-temperature organometallic reagents. In order to modify the size and quality of quantum dots, we controlled the growth temperature and the relative amount of precursors to be injected into the coordinating solvent. Moreover, an effective surface passivation of monodisperse nanocrystals was achieved by overcoating them with a higher-band-gap material. Synthesized CdSe quantum dots were studied to evaluate the optical, electronic and structural properties using UV-absorption, and photoluminescence measurement.

  • PDF

Determination of Electrode Potential in Micro Electrochemical Machining of Passive Metals (부동화 금속의 미세 전해 가공 시 전극 전위의 선정)

  • Nam Ho-Sung;Kim Bo-Hyun;Chu Chong-Nam;Park Byung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.146-152
    • /
    • 2006
  • In micro electrochemical machining (ECM), electrodes should be prevented from unfavorable oxide and Passive layer formation on the machined surface or overall corrosion of the entire surface. Generally, metal electrodes corrode, passivate or dissolve in the electrochemical cell according to the electrode potential. Therefore, each electrode must maintain its stable potential. Tn this paper, the stable electrode potentials of tool and workpiece were determined using the potentiodynamic polarization test and verified experimentally considering machining stability and surface quality. Stable workpiece electrode potentials of two different passive materials of 304 stainless steel and nickel were determined in the 0.1 M sulfuric acid. Experimental results show good machined surface and fast machining rate using the determined electrode potentials.

Corrosion Resistance of SD460 Reinforcing Rod by Ceramic Coating (SD460 철근의 세라믹 코팅에 의한 내식성 향상연구)

  • Park, Ki Y.;Lee, Jong K.;Hong, Seok W.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.157-161
    • /
    • 2009
  • The corrosion resistance of reinforcing bar was studied to endure the marine environment during shipment. The red rust on the surface did not damage the adherence in the concrete structures, especially in highly alkaline environment, but made the consumer doubt of the quality. The passivation process by alkalization of the quenching water in the tempcore process failed to endure the long shipping period. The ceramic coating by sol-gel process improved the corrosion resistance without damaging the mechanical properties and adherence between concrete and reinfiorcing bar. Optimal concentration of the coating solution and coating temperature were tested. No additional energy was necessary for the coating process by spraying during cooling process, resulting simplified process and low cost. Salt spray test, cyclic corrosion test and atmospheric test were employed to confirm the resistance. The corrosion rates were presented by rating number and polarization resistance. The coating layer was examined by FIB, XRD and SEM etc.

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.

A Research of the Characteristics of $Hg_{1-x}Cd_{x}$Te material by using Electro - Chemical Reduction (Electro-Chemical Reduction에 의한 $Hg_{1-x}Cd_{x}$Te재료의 특성 고찰)

  • 이상돈;김봉흡;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.38-41
    • /
    • 1994
  • The method of passivation for protecting the $Hg_{1-x}Cd_{x}$Te surface is important device fabrication process. Because the surface components are highly reactive leading to its chemical and electrical instability. Especially. the material of detecting for infrared radiation, of which composition is x=0.2 or 0.3, is narrow bandgap semi- conductor. The narrow bandgap semi conductors are largely governed by the properties of the semiconductor surface. The narrow bandgap semi-conductors are largely governed by the properties of the semiconductor surface. The electro-chemical processing of $Hg_{1-x}Cd_{x}$Te allows rigorous control of the surface chemistry and provides an in-suit monitor of surface reaction. So electro-chemical reduction at specific potential can be selectively eliminated the undesirable species on the surface and mainpulated to reproducibly attain the desired stoichiometry. This method shows to assess the quality of chemically treated good $Hg_{1-x}Cd_{x}$Te surface.

  • PDF

Fabrication of high-quality silicon wafers by gettering process (Gettering을 이용한 태양전지용 고품위 실리콘 기판 제작)

  • Park, Hyo-Min;Tark, Sung-Ju;Kang, Min-Gu;Park, Sung-Eun;Lee, Seung-Hun;Kim, Dong-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.366-366
    • /
    • 2009
  • 후면접합 태양전지는 상용 태양전지의 수평전류 손실(lateral current loss) 이 없으며, 전면전극에 의해 발생하는 그림자 손실(shading loss) 줄인 고효율 태양전지의 하나이다. 생성된 반송자가 후면에 위치한 전극에서 수집되기 때문에 효율향상을 위해서는 불순물에 의한 재결합을 줄이는 것이 중요하다. 따라서 Gettering 은 높은 소수반송자 수명(life-time)을 가지는 고품위 실리콘 기판은 고효율 실리콘태양전지 제작을 위한 중요 요소 기술이다. 본 연구에서는 n-type c-Si 기판을 이용한 고효율 실리콘 이종접합 태양전지제작을 위해 external gettering 공정을 이용하여 고품위 실리콘 기판을 제작하였다. POC13 doping process 의 온도, 시간을 변화시킴으로써 이에 따른 변화를 관찰하였다. 주사전자현미경(SEM)를 통해 etch pit 을 확인 했으며,Four point probe 를 통해 면저항을 측정, 인(P)의 농도를 계산 하였다. 계산된 면저항을 통해 인(P)의 확산 깊이를 계산하였다. Iodine passivation 된 시편을 Qusi-steady state photoconductance (QSSPC)를 이용하여 소수반송자 수명을 측정함으로써 gettering 에 의한 bulk lifetime 향상 효과를 관찰하였다.

  • PDF

A Production and Analysis on High Quality of Thin Film Transistors Using NH3 Plasma Treatment (NH3 Plasma Treatment를 사용한 고성능 TFT 제작 및 분석)

  • Park, Heejun;Nguyen, Van Duy;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.479-483
    • /
    • 2017
  • The effect of $NH_3$ plasma treatment on device characteristics was confirmed for an optimized thin film transistor of poly-Si formed by ELA. When C-V curve was checked for MIS (metal-insulator-silicon), Dit of $NH_3$ plasma treated and MIS was $2.7{\times}10^{10}cm^{-2}eV^{-1}$. Also in the TFT device case, it was decreased to the sub-threshold slope of 0.5 V/decade, 1.9 V of threshold voltage and improved in $26cm^2V^{-1}S^{-1}$ of mobility. Si-N and Si-H bonding reduced dangling bonding to each interface. When gate bias stress was applied, the threshold voltage's shift value of $NH_3$ plasma treated device was 0.58 V for 1,000s, 1.14 V for 3,600s, 1.12 V for 7,200s. As we observe from this quality, electrical stability was also improved and $NH_3$ plasma treatment was considered effective for passivation.

Advances in Crystalline Silicon Solar Cell Technology

  • Lee, Hae-Seok;Park, Hyomin;Kim, Donghwan;Kang, Yoonmook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.82-82
    • /
    • 2015
  • Industrial crystalline silicon (c-Si) solar cells with using a screen printing technology share the global market over 90% and they will continue to be the same for at least the next decade. It seems that the $2^{nd}$ generation and the $3^{rd}$ generation technologies have not yet demonstrated competitiveness in terms of performance and cost. In 2014, new world record efficiency 25.6% (Area-$143.7cm^2$, Voc-0.740V, $Jsc-41.8mA/cm^2$, FF-0.827) was announced from Panasonic and its cell structure is Back Contact $HIT^*$ c-Si solar cell. Here, amorphous silicon passivated contacts were newly applied to back contact solar cell. On the other hand, 24.9% $TOPCon^{**}$ cell was announced from Fraunhofer ISE and its key technology is an excellent passivation quality applying tunnel oxide (<2 nm) between metal and silicon or emitter and base. As a result, to realize high efficiency, high functional technologies are quite required to overcome a theoretical limitation of c-Si solar cell efficiency. In this presentation, Si solar cell technology summarized in the International Technology Roadmap for Photovoltaics ($^{***}ITRPV$ 2014) is introduced, and the present status of R&D associated with various c-Si solar cell technologies will be reviewed. In addition, national R&D projects of c-Si solar cells to be performed by Korea University are shown briefly.

  • PDF