• Title/Summary/Keyword: Passing Train

Search Result 216, Processing Time 0.036 seconds

Dynamic analysis of train-bridge system under one-way and two-way high-speed train passing

  • Jahangiri, Meysam;Zakeri, Jabar-Ali
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.33-44
    • /
    • 2017
  • In this paper, the dynamic responses of train-bridge system under one-way and two-way high-speed train passing are studied. The 3D finite element modeling is used and the bridge and train are modeled considering their details. The created model is validated by the results of the dynamic field test. To study the effect of train speed, different train passing scenarios are analyzed, including one-way passing, two-way passing in different directions at same speeds, and two-way passing in different directions at different speeds. The results show that the locations of maximum acceleration are different in one-way and two-way passing modes, and the maximum values in two-way passing mode are higher than those in one-way passing mode, while the maximum accelerations in both modes are almost identical. The displacement and acceleration values in different scenarios show peaks at speeds of 260 and 120 km/h, due to the proximity of the natural frequencies of the bridge and loading frequencies of the train at these speeds.

A Study on Wind Pressure inside Cheonan High Speed Train Station (고속전철 천안역사 내부의 풍압연구)

  • Won Chan-Shik;Kim Sa Ryang;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.843-846
    • /
    • 2002
  • Unlike ordinary train, the HST(High Speed Train) is operated at a very high speed, which may cause pressure transient problems when the HST is passing through a station. In the present study, the wind pressure caused by the passing HST was measured in the Cheonan HST station and compared with the numerical simulations. For the measurement, the HST was passing through the station at speeds of 240 km/h north bound and 150 km/h south bound. MEMS based differential pressure transducers are used to measure pressure variation at various locations in the station. It is shown from the results that measured data are in good agreement with CFD simulation with moving mesh technique for the train movement. With the present validation of CFD simulation, the CFD simulation may effectively aid the design of future HST station.

  • PDF

Numerical Analysis of 3-Dimensional Unsteady Flow Around the High Speed Train (고속으로 주행하는 열차 주위의 3차원 비정상 유동장 해석)

  • Ha, Seong-Do
    • 연구논문집
    • /
    • s.27
    • /
    • pp.15-34
    • /
    • 1997
  • The 3-dimensional unsteady compressible flows around the high speed train have been simulated for the train entering a tunnel and for passing another train. The simulation method employs the implicit approximation-factorization finite difference algorithm for the inviscid Euler equations in general curvilinear coordinates. A moving grid scheme is applied in order to resolve the train movement relative to the tunnel and the other train. The velo-city and pressure fields and pressure drag are calculated to study the effects of tunnel and the other train. The side directional force which is time dependent is also computed for the passing train. Pressure distribution shows that the compression wave is generated in front of the train noise just after the tunnel entrance and proceeds along the inside of tunnel.

  • PDF

Experimental study to assess the aerodynamic effects for conventional train passage on station platform (기존선 열차가 승강장을 통과할 때 발생하는 공기역학적인 문제들에 대한 기초실험 연구)

  • Kim, Dong-Hyeon;Shin, Min-Ho;Kwon, Hyun-Goo;Song, Moon-Shuk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1875-1880
    • /
    • 2003
  • Measurements of wind flow and pressure fluctuations induced by train passing on station platform have been conducted. Test conventional trains have a different nose shapes - bluff nose and wedged nose. The bluff nose train influence peak value of pressure fluctuations on station platform three times more than the wedged nose train for train speed of 108 km/h. Also, air flow induced by the bluff nose train passing is three times more than the wedged nose train passing. Current study shows that the gust induced by the bluff nose conventional train may threaten a passenger's safety on station platform in proximity to train passage.

  • PDF

Wind Pressure Transients in the Tunnel inside a Station Caused by a Passing High Speed Train

  • Nahmkeon Hur;Kim, Sa-Ryang;Kim, Wook;Lee, Sangyeul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1614-1622
    • /
    • 2004
  • When a High Speed Train (HST) passes through a station with no stop, effects of wind pressure transients caused by this passing train have to be considered for the safety of passengers on the platform and for the possible structural safety problems as well. In Gwangmyeong and Daejeon stations of the Korean high speed railroad, tunnels inside stations for the passing train are proposed to reduce the noise and wind pressure transients to the passengers on the platform. In the present study, transient 3-D full Navier-Stokes solutions with moving mesh to implement train movement are obtained and compared with the results obtained by the towing tank experiment. Investigations on flow phenomena for various train speeds and design modifications are also performed.

Analysis on the Characteristics of Pressure Fluctuation for High Speed Train passing through Tunnels (고속열차가 터널내에서 받는 압력변동 특성 분석)

  • Park Choon-Soo;Seo Sung-Il;Kim Ki-Hwan;Lee Uk-Jae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.690-695
    • /
    • 2004
  • In order to develop a high speed train, various conditions have been considered. Fatigue strength assessment by the fluctuation of pressure is an important one. In this study, the fluctuation and frequency of pressure is measured when KHST(Korean High Speed Train) passes through tunnels in the Kyung-Bu high-speed line. And the characteristics of pressure fluctuation is analysed and formulated. The results of analysis are as follows. The train entering speed and fluctuation value are related. The pressure increasing is generated in proportion to train velocity at leading car. When two train is passing through the tunnel, the pressure value is $1.5\~2$ times higher than one train is passing. The damping ratio of pressure fluctuation is about $92\%$. The number of pressure fluctuation in a tunnel is 4 to 6 times. The result in this study would be a good guidance to calculate the fatigue life and the reliability index of body structure.

  • PDF

A Numerical Study on Effect of a Partition Wall Height on Wind Pressure Load when KTX passes through a Station (한국고속전철(KTX)이 역사를 통과할 때 격벽의 높이에 따른 풍하중의 변화에 대한 수치해석 연구)

  • Cho D.;Hur N.;Kim S. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • A high speed train passing through a station may have undesired effects to passengers on platform due to abrupt pressure transients. Therefore it is very important to reduce the possible degree of danger by installing partition walls in passing lanes in designing the stations having passing train. In the present study, a pressure load to a passenger on platform is studied for the cases of various heights of the partition wall to assess the effectiveness of the wall on the passenger safety. From the results, it is seen that the pressure load on a passenger may be largely reduced by the partition wall. The heights of the partition wall for various passing speed are also studied based on the safety regulation.

  • PDF

The study on effect of electric train passing automatic changover system in neutral section of electric railway (절연구간 자동전원 절체시스템을 운행하는 전기차량 영향성 연구)

  • Hong, Hyun-Pyo;Yang, Sang-Woong;Cha, Han-Ju;Kim, Cheol-Hwan;Lee, Hee-Soon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.195-203
    • /
    • 2011
  • This paper is to analysis technical characteristics occured in the eletric train power conversion device passing automatic changover system in neutral section of electric railway. Power conversion devices in electric train are classified according to the current type and voltage type. The results of this study is used to ensure the stability of electric train in neutral section of electric railway.

  • PDF

WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STAT10N CAUSED BY PASSING TRAINS (상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.64-67
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique is adopted considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel of platform are included in a computational domain and detailed shape of train is also modeled Numerical analyses were conducted on five operational condition which are different velocity variation of subway train, existence of stationary train and passing each other trains. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation was found to be satisfactory to various foreign standards.

  • PDF

WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STATION CAUSED BY PASSING TRAINS (상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is used with actual operational condition of subway train by adopting the moving mesh technique considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel connecting the stations are included in a computational domain with modeling the detailed shape of the train. Numerical analyses are conducted on five operational conditions which include the variation of the train speed, case with or without the train stopped in the other track, and case for two trains passing each other inside the station. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation for the cases considered in the present study is found to be satisfactory to various foreign standards.