• 제목/요약/키워드: Passenger presence detection sensor

검색결과 4건 처리시간 0.02초

안전띠 착용 유무에 근거한 두 단계의 충돌 가혹도 수준을 갖는 충돌 판별 알고리즘 (Crash Discrimination Algorithm with Two Crash Severity Levels Based on Seat-belt Status)

  • 박서욱;이재협
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.148-156
    • /
    • 2003
  • Many car manufacturers have frequently adopted an aggressive inflator and a lower threshold speed for airbag deployment in order to meet an injury requirement for unbolted occupant at high speed crash test. Consequently, today's occupant safety restraint system has a weakness due to an airbag induced injury at low speed crash event. This paper proposes a new crash algorithm to improve the weakness by suppressing airbag deployment at low speed crash event in case of belted condition. The proposed algorithm consists of two major blocks-crash severity algorithm and deployment logic block. The first block decides crash severity with two levels by means of velocity and crash energy calculation from acceleration signal. The second block implemented by simple AND/OR logic combines the crash severity level and seat belt status information to generate firing commands for airbag and belt pretensioner. Furthermore, it can be extended to adopt additional sensor information from passenger presence detection sensor and safing sensor. A simulation using real crash data for a 1,800cc passenger vehicle has been conducted to verify the performance of proposed algorithm.

차량 내 탑승자 상태 인식용 적외선 센서의 제조 및 특성 (Fabrications and Characteristics of Infrared Sensor for Passenger Conditional Detection in Vehicle)

  • 이성현;남태운
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.222-229
    • /
    • 2009
  • A noble infrared sensor was studied for passenger conditional detection in vehicle, This research relates to uncooled infrared sensors for detecting the presence, type and temperature of occupants in vehicle. It sense that the occupants purpose to control the smart airbag for safety in the case of adult or child and to control the automatic air conditioning for convenience. This paper described the design and the fabrication of microbolometers which were composed of 2 by 8 elements using the surface micromachining technology. The characteristics of the array were investigated in the spectral region of $8{\sim}12{\mu}m$. The fabricated detectors exhibited the thermal mass of $7.05{\times}10^{-9}\;J/K$, the thermal conductance of $1.03{\times}10^{-6}\;W/K$, the thermal time constant of 6.8 ms, the responsivity of $2.96{\times}10^4\;V/W$ and the detectivity of $1.01{\times}10^9\;cmHz^{1/2}/W$, at the chopper frequency of 10 Hz and the bias current of $4.4{\mu}A$. We could successfully detect the human body condition in the divided zone. As a results, we concluded that microbolometer optimized in this research could be useful for the application of passenger conditional detection in vehicle.

통신에 의한 신호시스템의 안전성 확보에 대한 연구 (The Study of Improve Safety for Signaling System using Communication)

  • 백종현;한성호;안태기;온정근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.307-314
    • /
    • 1999
  • The potential use of ranging sensors for reducing the occurrence of accidents in real environment is explored by many companies and laboratories. Most of the sensors under investigation utilize the FMCW(Frequency Modulated Continuous Wave) waveforms. The automotive environment presents to the FMCW radar sensor a multitude of moving and fixed targets and the sensor must detect and track only the targets which may pose a threat of collision or passengers accident. The sensor must function accurately in the presence of background echoes generated by moving and fixed targets, ground reflections, atmospheric noises, including rains, fog, and, snow and noise generated within the receiver. False detection of the desired target in this environment may issue false alarms. That may be dangerous to the passenger and the vehicle. A high false alarm rate is totally unacceptable. The false alarm mechanism consists of noise peaks, crossing the threshold and the undesired response of the system to off lane targets which are not potentially hazardous to the radar equipped vehicle. This paper presents an improve technique safety performance for driver-less operation using FMCW radar sensors.

  • PDF

통신에 의한 신호시스템의 안전성 확보에 관한 연구 (The Study of Improved Safety of Signalling System using Communication)

  • 백종현;왕종배;변윤섭;박현준;한영재;김길동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1368-1370
    • /
    • 2000
  • The automotive environment presents to the FMCW radar sensor a multitude of moving and fixed targets and the sensor must detect and track only the targets which may pose a threat of collision or passengers accident. The sensor must function accurately in the presence of background echoes generated by moving and fixed targets, ground reflections, atmospheric noises, including rains, fog, and, snow and noise generated within the receiver. False detection of the desired target in this environment may issue false alarms. That may be dangerous to the passenger and the vehicle. A high false alarm rate is totally unacceptable. The false alarm mechanism consists of noise peaks, crossing the threshold and the undesired response of the system to off lane targets which are not potentially hazardous to the radar equipped vehicle. This paper presents an improve technique safety performance for driver-less operation using FMCW radar sensors.

  • PDF