• Title/Summary/Keyword: Passenger evacuation flow

Search Result 9, Processing Time 0.024 seconds

A Numerical Study on Passengers' Evacuation in a subway station in case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.142-147
    • /
    • 2009
  • In the present study, a numerical simulation of passenger evacuation in a subway station was performed. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) has been improved to simulate passenger flow in detailed geometry. The effect of grid density was assessed in the present study to show the advantage of using finer grid in the simulation. The method of coupling passenger flow and fire simulation has also been investigated to analyze passenger evacuation flow under fire. In this method the CO distributions in the subway station was used to assess fire hazards of passenger by means of FED(Fractional Effective Dose) model. Using the coupled algorithm a simulation for passenger evacuation flow and fire analysis were performed simultaneously in the simplified subway station. This algorithm could be used in the design of subway station for the purpose of passengers' safety in case of fire.

  • PDF

Analysis on Passenger Evacuation Flow from EMU using P*FLOW ($P^*FLOW_{(R)}$를 이용한 철도 차량에서의 승객 피난 해석)

  • Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.446-450
    • /
    • 2008
  • Urban transits of metropolises have been used by many citizens due to the merits of environment friendly traffic, mass transportation, safety and scheduled operation. It is very important to keep safety for the increased passengers. When the accidents as like fire occur, rapid evacuation from fire site is one of the most effective methods to decrease casualties. Furthermore, overseas buyers sometimes request the verification results of the passenger evacuation from rolling stock. In this study, algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed and made simulation program package. And, we applied it to the evacuation problem for urban transits. By using the developed program, we compared the simulation results of the effects of the location and size of door and elapsed time qualitatively and quantitatively.

  • PDF

A Numerical Study on Passenger Evacuation in a Subway Station in Case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.509-514
    • /
    • 2010
  • A numerical simulation of passenger evacuation in a subway station was performed by coupling the passenger flow analysis and the fire simulation. The algorithm of the passenger flow analysis was based on a DEM (Discrete Element Method) using the potential map of the direction vector for each passenger. This algorithm was improved in the present study as to use finer grid smaller than a passenger in order to resolve detailed geometry of the station and to resolve the behavior of passengers in the bottleneck at the ticket gate considering the collision of passengers to a wall or with other passengers. In the fire simulation, the CO distribution predicted by using CFD was used to take into account the effect of toxic gases on the passengers' mobility. The methodology proposed in the present study could be used in designing safer subway station in case of fire occurrence.

The Passenger Evacuation Simulation Using Fluent and EXODUS (Fluent와 EXODUS를 이용한 승객피난 시뮬레이션)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Park, Won-Hee;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.95-100
    • /
    • 2008
  • The simulation analysis of fire-driven flow and passenger evacuation in Daegu subway station, Chung-Ang, have been performed. The first location of outbreak of fire is inside passenger car in the third basement in Chung-Aug station, The smoke flow in the second and third basement has been analyzed using FLUENT 6.2. The CO (carbon monoxide) and temperature distribution in the train units and station platform have been obtained and transferred to input data for evacuation simulation. The highest temperature in the train units was 1500k. For the simulation of passenger evacuation, EXODUS has been used for whole basements (level 1${\sim}$level 3) in the station. Total number of people was assumed to be one thousand and 640 were placed inside train and 360 were placed outside train. In evacuation simulation, an average of 135 passengers were killed and an average time to evacuate takes 10min 19sec. The main evacuation routes used by passengers were investigated and the cause of death was identified by evacuation simulation.

The Passenger Evacuation Simulation Using Fluent and EXODUS (Fluent 와 EXODUS를 이용한 승객피난 시뮬레이션)

  • Jang, Yong-Jun;Park, Won-Hee;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1346-1353
    • /
    • 2007
  • The simulation analysis of fire-driven flow and passenger evacuation in Daegu subway station, Chung-Ang, have been performed. The first location of outbreak of fire is inside passenger car in the third basement in Chung-Ang station. The smoke flow in the second and third basement has been analyzed using FLUENT 6.2. The CO(carbon monoxide) and temperature distribution in the train units and station platform have been obtained and transferred to input data for evacuation simulation. The highest temperature in the train units was 1500K. For the simulation of passenger evacuation, EXODUS has been used for whole basements (level 1${\sim}$ level 3) in the station. Total number of people was assumed to be one thousand and 640 were placed inside train and 360 were placed outside train. In evacuation simulation, an average of 135 passengers were killed and an average time to evacuate takes 10min 19sec. The main evacuation routes used by passengers were investigated and the cause of death was identified by evacuation simulation.

  • PDF

Effectiveness of critical velocity method for evacuation environment in a railroad tunnel at fire situation (철도터널 내 화재 시 대피환경 확보를 위한 임계속도 산정식의 유효성 평가)

  • Lee, Seung-Chul;Lee, Jae-Heon;Lee, Seung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The effectiveness of one dimensional critical velocity method for evacuation environment at 10MW fire size in a railroad tunnel have been investigated in this paper by three dimensional CFD method. It was performed to evaluate the evacuation environment in terms of temperature distribution, visible distance distribution and CO concentration at some tunnel inlet velocity, 1m/s, 2m/s (near critical velocity), and 3m/s. At all inlet velocity, passenger should give away downward the flow direction because the inlet velocity can not afford to sufficient evacuation environment for passengers. In case of 3m/s inlet velocity, however, the evacuation environment for passengers is better than the other cases. To provide more safe evacuation environment on fire situation, tunnel inlet velocity should be larger than critical velocity.

  • PDF

An Experiment on Walking Speeds of Freshmen Unexperienced in Shipboard Life on a Passenger Ship (승선생활 미숙련 대학 신입생들의 여객선 내 보행속도 실험)

  • Hwang, Kwang-II
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.239-244
    • /
    • 2013
  • To increase the safety of onboard evacuation of guests who is unfamiliar with onboard living conditions, this study measured and compared the onboard walking speeds of 81 participants on a passenger ship, I t were found that the walking speeds at corridor on navigation were slower than those at berth by 27.2%, and the speeds of walking on the corner on navigation were slower than those at berth by 23.2%. This means that the ship motion on navigation directly influenced walking speeds. The walking speeds of upward-stairs and downward-stairs were measured to be 0.71m/s and 0.75m/s, respectively. From the crowd counter-flow experiments, because of the narrow space between participants, the walking speeds were decreased as person after person. And it was clear that the group's walking speeds were determined by the walking speeds of leading person(s) of the group. The walking speeds obtained this study were different from those of IMO guideline(MSC/Circ 1033).

The Study on Fire Phenomena in The Deeply Underground Subway Station (대심도 지하역사에서의 화재현상 연구)

  • Jang, Yong-Jun;Kim, Hag-Beom;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1773-1780
    • /
    • 2008
  • When the fire occur in the deeply underground subway station, the difficulties of passenger evacuation are expected because of many stairs to the exit. In this study, SOONGSIL-University station (7 line, 47m depth) is the one of the deepest subway stations of the each line in the Seoul metro. The numerical computational-simulation was performed for the fire driven flow in the subway station. Hot and smoke flow was analyzed from the simulation results. The proper plan of evacuation against fire was considered through the results. The fire driven flow was simulated using FDS code in which LES method was applied. The Heat Release Rate was 10MW and the ultrafast model was applied for the growing model of the fire source. The proper mesh size was determined from the characteristic length of fire size. The parallel computational method was employed to compute the flow and heat eqn's in the meshes, which are about 10,000,000, with 6cpu of the linux clustering machine.

  • PDF

The Comparative Analysis of Fire-Driven Flow Simulation for Dae-gu Subway Station Using FDS and Fluent. (FDS 및 FLUENT를 이용한 대구지하역사 화재유동 해석비교)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.50-55
    • /
    • 2008
  • The comparative analysis of fire-driven flow simulation for Dae-Gu subway station was performed using FDS and Fluent. The boundary condition was obtained from analyzed data for Dae-Gu subway fire accident which had been outbreaked in 2003 year. The smoke flow in the second and third basement has been analyzed. The CO and temperature distribution in the train units and station platform have been obtained with FDS and FLUENT and compared with each other. Total simulation time is 600s and the results are compared of each 10sec The analyzed data will be applied to the passenger evacuation simulation for Dae-Gu subway station and used to optimal design method.

  • PDF