• Title/Summary/Keyword: Passenger car diesel engine

Search Result 41, Processing Time 0.021 seconds

On-Road Investigation of PM Emissions of Passenger Vehicles Fuelled with Diesel and Gasoline Using Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용한 디젤 및 가솔린 차량에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Woo, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants, with high temporal and spatial resolution under real conditions. Equipment for the gas-phase measurements of CO, NOx, $CO_2$, and THC and for the measurement of the number, concentration, and size distribution of fine and ultra-fine particles by an FMPS and CPC was placed in a minivan. The exhausts of different types of vehicles can be sampled by an MEL. This paper describes the technical details of the MEL and presents data from the experiment in which a car chases passenger vehicles fuelled by diesel and gasoline. The particle number concentration in the exhaust of the diesel vehicle was higher than that of the gasoline vehicle. However, the diesel vehicle with a DPF emitted fewer particles than the vehicle equipped with a gasoline direct injection engine, with particle diameters over 50 nm.

Effect of Injection Strategy on the Exhaust Emission and Performance Characteristics of a Light-duty Diesel Engine (승용 디젤 엔진에서 분사 전략이 배출 가스 및 엔진 성능에 미치는 영향에 관한 연구)

  • Roh, Hyun-Gu;Lee, Doo-Jin;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2011
  • This paper described the effect of the multiple injections on the emission characteristics and combustion stability in a common rail diesel engine. In order to investigate the influence of multiple injections in a passenger car diesel engine, the injection strategy was varied with pilot injection, post injection and one main injection at various conditions. Based on the experimental results, the combustion and emissions characteristics were analyzed for the various injection strategies such as main, pilot-main, double-pilot-main, double- pilot-main-post injection strategy. It is revealed that the $NO_X$, HC and CO emissions are reduced by double pilot and post injection at medium load, however, soot emission is increased. Also, in the case of multiple injection, the combustion pressure is increased smoothly near the TDC and the coefficient of variation and fuel consumptions are decreased.

Effect of the Injection Parameters on Diesel Spray Characteristics

  • Song Kyu Keun;Sim Sang Cherl;Jung Byong Koog;Kim Hyung Gon;Kim Jang Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1321-1328
    • /
    • 2005
  • The characteristics of the diesel spray have affected certain aspects of engine performance, such as the power, fuel consumption, and emissions. Therefore, this study was performed to investigate the effects of various injection parameters. In order to obtain the effect of injection parameters on diesel spray characteristics, the experiment is performed by using a high temperature and pressure chamber. The behaviors of the spray are visualized by using a high speed video camera, spray angle, penetration, and various other things. The results of the experiment are summarized as follows. (1) The correlation of the spray penetration can be expressed as follows. $$0< t $$t_{b} (2) The correlation of the spray angle can be expressed as follows $$T_a=293K\;tan({\theta}/2)=0.59({\rho}a/{\rho}f)^{0.437}$$ $$T_a=473K\;tan({\theta}/2)=0.588({\rho}a/{\rho}f)^{0.404}$$ (3) The measured macro characteristics that include the spray tip penetration and spray angle corresponded with the established correlations.

Timing Verification of AUTOSAR-compliant Diesel Engine Management System Using Measurement-based Worst-case Execution Time Analysis (측정기반 최악실행시간 분석 기법을 이용한 AUTOSAR 호환 승용디젤엔진제어기의 실시간 성능 검증에 관한 연구)

  • Park, Inseok;Kang, Eunhwan;Chung, Jaesung;Sohn, Jeongwon;Sunwoo, Myoungho;Lee, Kangseok;Lee, Wootaik;Youn, Jeamyoung;Won, Donghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.91-101
    • /
    • 2014
  • In this study, we presented a timing verification method for a passenger car diesel engine management system (EMS) using measurement-based worst-case execution time (WCET) analysis. In order to cope with AUTOSAR-compliant software architecture, a development process model is proposed. In the process model, a runnable is regarded as a test unit and its temporal behavior (i.e. maximum observed execution time, MOET) is obtained along with on-target functionality evaluation results during online unit test. Furthermore, a cost-effective framework for online unit test is proposed. Because the runtime environment layer and the standard calibration environment are utilized to implement test interface, additional resource consumption of the target processor is minimized. Using the proposed development process model and unit test framework, the MOETs of 86 runnables for diesel EMS are obtained with 213 unit test cases. Using the obtained MOETs of runnables, the WCETs of tasks are estimated and the schedulability is evaluated. From the schedulability analysis results, the problems of the initially designed schedule table is recognized and it is fixed by redesigning of the runnable mapping and task offset. Through the various test scenarios, the proposed method is validated.

Application Software Modeling and Integration Methodology using AUTOSAR-ready Light Software Architecture (AUTOSAR 대응 경량화 소프트웨어 아키텍처를 이용한 어플리케이션 소프트웨어 모델링 및 통합 방법)

  • Park, In-Seok;Lee, Woo-Taik;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.117-125
    • /
    • 2012
  • This paper describes a model-based software development methodology for AUTOSAR-ready light software architecture(AUTOSAR-Lite). The proposed methodology briefly represents an application software modeling technique using Matlab/Simulink. Using the proposed technique, application software architecture elements (e.g. software components, runnables, and interfaces) and functional behaviors can be designed in a single modeling environment. From the designed model, the codes of application software is automatically generated using Real-Time Workshop Embedded Coder. The generated application software is easily integrated with hand-coded basic software using the proposed method. In order to evaluate the proposed methodology, a diesel engine management system for a passenger car was employed as a case study. Based on the methodology, 8 atomic software components and 52 runnables are successfully developed, and they are evaluated by engine experiments. From this case study, AUTOSAR compatible model-based application software was successfully developed, and the effectiveness of the proposed methodology was evaluated.

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

Wear Analysis at the Interface of Connecting-Rod Small-End Bushing and Piston-Pin Boss with a Floating Piston-Pin at Constant Angular Velocity during Engine Firing (엔진 파이어링동안 일정 축 각속도에서 비고정식 피스톤-핀과 연결봉-소단부 부싱 및 피스톤-핀 보스의 접촉면 마모해석)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.168-192
    • /
    • 2020
  • In recently designed diesel engines, the running conditions for piston-pin bearings have become severe because of the higher combustion pressure and increased temperature. Moreover, the metal removal from the bushing material has strongly reduced the ability of the antifriction material to accept asperity contacts. Therefore, it is necessary to find ways of reducing wear scar on the connecting-rod small-end bushing and piston-pin boss bearing related to the higher combustion pressure on the power cell of an engine. In this work, the position and level of material removal from the surfaces of the bushing and bearing under such severe operating conditions - for example, maximum power and torque conditions of a passenger car diesel engine - are estimated for several combinations of surface roughness. First, piston-pin rotating motion is investigated by calculating the friction coefficient at piston-pin bearings, the oil film thickness, and the frictional torques induced by hydrodynamic shear stress. Subsequently, the wear scarring on the surfaces of a connecting-rod small-end bushing and two piston-pin boss bearings related to piston-pin rotational motion is numerically calculated under the maximum power and torque operating conditions. This work is helpful to determine the reasonable surface roughness of the bushing and bearing for reducing wear volume occurring at the interface between a bearing and a shaft.

Mathematical Programming for Air Pollution Control in Pusan (부산시 대기오염방지를 위한 수리계획법)

  • 이창효
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.229-241
    • /
    • 1996
  • This study was performed to find the most desirable emission reduction for each mobile source pollutant and the optimal control strategy at a given level of expenditures in Pusan City in 2000 by using the interactive s-constraint method developed by Chang-Hyo Lee and Hyung-Wook Kim, which isone of the mathematical programming models. The most desirable emission reduction is 7093 ton/year for particulate (TSP), 4871 ton/year for NOx, 5148 ton/year for HC and 36779 ton/year for CO. The optimal control strategy is as follows; 1. As to passenger car and taxi, limiting VKT (vehicle kilometers travelled) in congested areas will be necessary. In addition to this, improving vehicie inspection Program should be enforced. 2. As to small-gasoline bus, traffic adaptive control system will be necessary. 3. As to small-diesel bus, non-adjustable engine parameters will have to be applied. .4. As to heal bus and heart truck, catalytic trap oxidizer and limiting VKT in congested areas will do necessary. 5. As to motorcycle, 2-cycle motorcycles should be converted to 4-cycle motorcycles.

  • PDF

Pilot Spray Characteristics of Piezo type Injectors for High Pressure Injection (고압 분사용 Piezo 인젝터의 Pilot 분무특성)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2076-2081
    • /
    • 2004
  • Future exhaust gas limits for diesel-driven passenger cars will force the automotive industry to significantly improve the performance of engine. Since modern common-rail injection systems deliver more degrees of freedom referring to the injection process, again the optimization of the injection process could offer a possibility to meet the exhaust gas limits. This study describes the characteristic the pilot spray structure of piezo-driven injector for a passenger car common-rail system to be applicable multiple injection caused by fast response rather than solenoid-driven injector. The piezo-driven injector is prototype injector with same needle chamber of solenoid injector and the solenoid-driven one is commercial injector. The pilot spray characteristic such as spray tip penetration, spray speed, spray angle were obtained by spray images, which is measured by the Mie scattering method with optical system for high-speed temporal photography. It was found that piezo-driven injector effected electric change as important factor and showed faster response than solenoid-driven injector.

  • PDF

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.