• Title/Summary/Keyword: Passenger car diesel engine

Search Result 41, Processing Time 0.022 seconds

Combustion and Emission Characteristics of Passenger Car Common-rail Diesel Engine with DME Fuel (DME를 이용한 승용 디젤 커먼레일 엔진의 연소 및 배기특성)

  • Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2010
  • This paper described the effects of DME blended fuel on the engine combustion and emission characteristics of four cylinder CRDI diesel engine. Biodiesel was added into the DME fuel in order to improve the low kinematic viscosity of DME fuel. In this work, the experiment was performed under th various injection timings and injection strategy at constant engine speed and engine load. To maintain the fuel pressure and temperature, pressure and temperature controllers were installed to the DME fuel system. The results show that ignition delay was shortened and combustion duration was extended when DME blended fuel is supplied. Despite of slightly higher NOx emission with DME blended fuel at equal conditions in comparison with those of diesel fuel, the engine showed lower HC and CO emission characteristics.

Effect of Injection Hole and Needle-driven Characteristics on Pilot Spray in High Pressure Injector with Common-rail System (커먼레일 고압분사용 인젝터의 분공수 및 니들구동특성이 Pilot 분무에 미치는 영향)

  • Lee, Jin-Wook;Bae, Jang-Woong;Kim, Ha-Nul;Kang, Kern-Yong;Min, Kyung-Duk
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.8-14
    • /
    • 2004
  • future exhaust emission limits for diesel-driven passenger cars will force the automotive company to significantly develop of the new technologies of diesel engine respectively of the drive assemblies. As we know, the contributions of soot and nitrogen oxide is the main problems in diesel engine. Recently, as a result, the pilot injection of common-rail fuel injection system recognizes an alternative function to solve an environmental problem. This study describes the effect of the nozzle structure and driven characteristic of injector on pilot injection fur a passenger car common-rail system. The pilot spray structure such as spray tip penetration, spray speed and spray angle were obtained by high speed images, which is measured by the Mie scattering method with optical system fur high-speed temporal photography. Also the CFD analysis was carried out for fuel behavior under high pressure in between needle and nozzle of injector for common-rail system to know the condition of initial injection at experiment test. It was found that solenoid-driven injector with 5-hole was faster than 6-hole injector in spray speed at same conditions and piezo-driven injector showed faster response than solenoid injector.

  • PDF

Engine performance and emission reduction characteristics of biodiesel blended diesel fuel in a passenger car diesel engine (바이오디젤 혼합연료를 적용한 승용디젤엔진의 성능 및 배출물 저감특성)

  • Jho, Shi Gie
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.181-185
    • /
    • 2014
  • This paper describes the effect of canola biodiesel blended fuel on the combustion and emission characteristics in a four cylinder CRDI(Common-rail direct injection) diesel engine. In this study, using the biodiesel fuel(20%,40% of biodiesel-canola oil and 80%, 60% of ULSD(ultra low sulfur diesel) by volume ratio with change of engine speed and injection pressure. The experiment results of increasing biodiesel ratio fuel show that NOx emissions increased. However, soot emission were reduced BC fuels compared to ULSD. Soot emissions largely increased at low injection pressure.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion (고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성)

  • Park, Youngsoo;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구)

  • Park, Inseok;Hong, Seungwoo;Shin, Jaewook;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.

Analytical Study on the Optimized Design of Engine Bearings for a Passenger Car (자동차용 엔진베어링의 최적설계에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, the minimum oil film thickness and the maximum oil film pressure of engine bearings have been analyzed by using the elastohydrodynamic theory and Taguchi's design method as functions of the oil groove width, oil hole diameter, oil hole position, and oil supply pressure. The optimized design of the engine bearing f3r an automotive Diesel engine is very important for supporting a load-carrying capacity due to gas pres-sures from the engine combustion chamber and inertia forces of the piston. The optimized design data of engine bearings indicated that the optimized oil groove width and an oil diameter of a engine bearing are 8mm at the speed of 2,000 rpm for a given 4-cylinder Diesel engine. Thus, the oil groove oil groove and an oil hole for high performances of an engine bearing may be considered as major design parameters compared to other design factors, which are strongly related to the minimum oil film thickness and the maximum oil pressure distribution of the engine oil.

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

Characteristics of a High Pressure Accumulator Type Fuel Injection System (축압식 고압 연료분사펌프 시스템 특성 해석)

  • Park, Seok Beom;Koo, Ja Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

A Study on the Electronic-ECR Valve for Light Duty Diesel Engine (소형 디젤 엔진용 배기 재순환용 전자식 밸브에 관한 연구)

  • 송창훈;이민호;정용일;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.37-43
    • /
    • 2003
  • The exhaust gas recirculation (EGR) is needed for one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated, also application of EGR system is difficult because of the penalty in fuel consumption and the increase in particulate matter. This study is focused on the development of EGR valve using the electrical method. The effects of EGR on the characteristics of NOx, CO, CO2 emissions and particulate mater have been investigated using small-displacement size 0.8-liters engine of diesel passenger car operating at several loads and speeds. After the analysis and comparison between conventional E-EGR valve and developed E-EGR valve performance by test bench, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.