• 제목/요약/키워드: Passenger airbag door

검색결과 6건 처리시간 0.02초

티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계 (Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength)

  • 최환영;공병석;박동규
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

Hard IP Invisible PAB 의 밀링타입 Tear Seam 해석 방안 연구 (A Study on Opening Analysis of Milling type Tear Seam of Hard IP Invisible PAB Door)

  • 최요한;이강욱;안병재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.464-468
    • /
    • 2008
  • In most of the passenger side airbag door in hard type IP today is designed with invisible tear-seam line. In order to design the tear-seam invisible, the tear-seam must be designed with required RWT (residual wall thickness) that is just thick enough to be broken by the PAB pressure on deployment and not by other surrounding impact forces. Hence, keeping the right optimum opening force is very important, and finding the right RWT became the key in designing the tear-seam. The study conducted in this paper describes the search for the optimum RWT around the tear-seam by using finite element method and the optimum RWT is suggested for milling type tear-seam having V-shape cross-section.

  • PDF

어린이 상해에 영향을 주는 조수석 에어백 설계 인자에 대한 연구 (A Study on the Passenger Airbag Design Parameters Influencing Child Injury)

  • 최원정;김권희;고훈건;김동석;손창규
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.176-181
    • /
    • 2009
  • The passenger airbag(PAB) designed for standard sized adults may induce unexpected results to children in out-of-position(OOP) postures. In this work, using MADYMO software, simulations of the OOP injury of children have been performed with respect to PAB design parameters and child dummy positions. The attention is focused on some details with respect to the injury of 3 and 6 year old children in two OOP postures. Among the various design parameters of the passenger airbag systems, four parameters are selected for the sensitivity analysis of the injury with the Taguchi method: bag folding pattern, vent hole size, position of the cover tear seam and the type of door tear seam. An optimal combination of the parameters is suggested.

2샷 사출 압축 소프트 인스트루먼트 패널 개발 (Development of Two-Shot Injection-Compression Soft Instrument Panel)

  • 공병석;박동규
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.638-643
    • /
    • 2019
  • 자동차 소프트 인스트루먼트 패널의 비용과 중량을 줄이기 위하여 두 가지 사출을 동시에 수행하는 방법을 이용한 새로운 인스투르먼트 패널이 개발되었다. 첫 번째 사출은 뒷면 발포체 포일을 삽입하는 압축 사출을 하는 방법이고, 다른 하나는 동승석 에어백에 도어와 동시에 2샷 사출하는 방법이다. 우리는 그것을 'IMX-IP'라고 부르며, 이것은 인스트루먼트 패널의 모든 부품들이 종류가 다른 수지와 하나의 금형 안에서 만들어지는 방법인 것이다. 본 기술의 개발 과정은 (1) TRIZ 기법을 이용한 새로운 사출 금형 설계, (2) 사출 조건의 최적화와 폼의 손실과 두께 편차를 최소화하기 위한 뒷면 발포체 포일의 최적화, (3) 2샷 사출 압축에 대한 CAE 해석 검증, (4) 신뢰성 검증 시험과 양산에의 적용 순서로 이루어져 있다. 뒷면 발포체 포일 삽입을 이용한 2샷 사출을 통한 공정 감소는 개발비와 중량 절감과 함께 소프트 인스투루먼트 패널의 부드러운 느낌을 향상시키는 것을 가능하게 하였다.

추진제 특성을 이용한 에어백 인플레이터 성능 제어에 대한 실험 및 해석에 대한 연구 (Automotive Airbag Inflator Analysis Using Measured Properties of Modern Propellants)

  • 서영덕;김건우;홍범석;김진호;정석호;여재익
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.53-62
    • /
    • 2010
  • An airbag is composed of housing assembly, door assembly, cushion assembly, and an inflator. The inflator is the essential part that generates gas for airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In this study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed and the results were compared with the tank test data. In the zone of discharge tank the pressure quickly rose, the pattern of pressure curve was very similar to the pressure curve of real test. And in zone 1 & 2 & 3 the mass of products was increased and decreased with time. In zone 4, the mass of products was increased with time like real inflator. From the similarity of pressure curve in zone 4 and closed bomb calculation the modeled results are well correlated with the experimental values.

고속 측면 충돌 감지 알고리즘의 개발 (Development of Fast Side-impact Sensing Algorithm)

  • 박서욱;김현태
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.163-170
    • /
    • 2000
  • Accident statistics shows that the portion of fatal occupant injuries due to side impacts is considerably high. The side impact usually leads to a severe intrusion of side structure into the passenger compartment. Furthermore, the safety zone for the side impact is relatively small compared to the front impact. Those kinds of physics for side impact frequently result in a fatal injury for the occupant. Therefore, NHTSA and EEVC are trying to intensify the regulation for the occupant protection against side impact. Both the regulation and recent market trends are asking for an installation of side airbag. There are several types of system configuration for side impact sensing. In this paper, we adopt the acceleration-based remote sensing method for the side airbag control system. We mainly focus on the development of hardware and crash discrimination algorithm of remote sensing unit. The crash discrimination algorithm needs fast decision of airbag firing especially for high-speed side impact such as FMVSS 214 and EEVC tests. It is also required to distinguish between low-speed fire and no-fire events. The algorithm should have a sufficient safety margin against any misuse situation such as hammer blow, door slam, etc. This paper introduces several firing criteria such as acceleration. velocity and energy criteria that use physical value proportional to crash severity. We have made a simulation program by using Matlab/Simulink to implement the proposed algorithm. We have conducted an algorithm calibration by using real crash data for 2,500cc vehicle. The crash performance obtained by the simulation was verified through a pulse injection method. It turned out that the results satisfied the system requirements well.

  • PDF