• Title/Summary/Keyword: Passenger Cars

Search Result 388, Processing Time 0.028 seconds

Dynamic effect of high-speed trains on simple bridge structures

  • Adam, Christoph;Salcher, Patrick
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.581-599
    • /
    • 2014
  • In this paper the overall dynamic response of simple railway bridges subjected to high-speed trains is investigated numerically based on the mechanical models of simply supported single-span and continuous two-span Bernoulli-Euler beams. Each axle of the train, which is composed of rail cars and passenger cars, is considered as moving concentrated load. Distance, magnitude, and maximum speed of the moving loads are adjusted to real high-speed trains and to load models according to Eurocode 1. Non-dimensional characteristic parameters of the train-bridge interaction system are identified. These parameters permit a spectral representation of the dynamic peak response. Response spectra assist the practicing engineers in evaluating the expected dynamic peak response in the design process of railway bridges without performing time-consuming time history analyses.

A Study on the precious stopping control for the automatic electric rail cars (도시철도 전차의 정위치 정차 제어에 관한 연구)

  • Park, Mun-Gyu;Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.228-230
    • /
    • 2006
  • While trains perform a complete precision stopping control at stop point, it is essential to keep better commuters comfort in prompt. Because a train's brake force tends to increase a brake effort in a low speed and a low brake effort, a brake force in motor cars must be increased to keep better passenger comfort, to control the special braking qua1ities and to prevent the impact of the automatic coupler rather than trailer's, Rail cars must have a special braking process for the train stopping control. In the train stop mode, the train stopping control is designed to start at 20km/h. It starts by Dynamic brake blending, and then finally stops by only the friction. If these process are not exactly activated, the train may fail a complete precision stop. In this report, it studied the electric and friction brake processing during the precious stopping control. To achieve exact test results, the speed reference has to be reduced the calculated difference. In the precision stopping control. the ways of the keeping brake force in motor car was analyzed and some solutions of controling air pressure was brought up by means of direct test in main line, This study was based on line 5 in Seoul Metropolitan subway.

  • PDF

A Study on the Characteristics of Carbon Dioxide Emissions from Gasoline Passenger Cars (국내 휘발유 승용차의 CO2 배출 현황)

  • Lyu, Young-Sook;Ryu, Jung-Ho;Jung, Sung-Woon;Jeon, Min-Seon;Kim, Dae-Wook;Eom, Myung-Do;Kim, Jong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.58-64
    • /
    • 2007
  • As the concerns regarding global worming were increased, the pressure of greenhouse gas(GHG) emission reduction on mobile source was also increased. Carbon dioxides contribute over 90% of total GHG emission and the mobile source occupies about 20% of this $CO_2$ emission. Therefore automotive exhaust is suspected to be one of the major reasons of the rapid increase in greenhouse effect gases in ambient air. In this study, in order to investigate $CO_2$ emission characteristics from gasoline passenger cars(PC), which is the most dominant vehicle type in Korea, 106 vehicles were tested on the chassis dynamometer. $CO_2$ emissions and fuel efficiency were measured. The emission characteristics by displacement, gross vehicle weight, vehicle speed and CVS-75/vehicle speed mode were discussed. Test modes were vehicle speed modes and CVS-75 mode that have been used to develop emission factors and to regulate for light-duty vehicle in Korea. It was found that $CO_2$ emissions showed higher large displacement, heavy gross vehicle weight, low vehicle speed and CVS-75 mode than small displacement, light gross vehicle weight, high vehicle speed and vehicle speed mode, respectively. From these results, correlation between $CO_2$ emission and fuel efficiency was also determined. The results of this study will contribute to domestic greenhouse gas emissions calculation and making the national policy for climate change.

A Study on Characteristics of Carbon Dioxide Emissions from Passenger Cars (승용차의 이산화탄소(CO2) 배출특성에 관한 연구)

  • Lyu Y.S.;Ryu J.H.;Jeon M.S.;Kim D.W.;Jung S.W.;Kim S.M.;Eom M.D.;Kim J.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.451-458
    • /
    • 2006
  • Automotive exhaust is suspected to be one of the major reasons of the rapid increase in greenhouse effect gases in ambient air. As the concerns regarding global worming were increased, the pressure on mobile source greenhouse gas (GHG) emission were also increased. Carbon Dioxides contribute over 90% of total GHG emission and the mobile source occupies about 20% of this $CO_2$ emission. In this study, in order to investigate $CO_2$ emission characteristics from gasoline and LPG passenger cars (PC), which is the most dominant vehicle type in Korea, 53 vehicles were tested on the chassis dynamometer. $CO_2$ emissions and fuel consumption efficiency were measured. The emission characteristics by fuel type, model year, mileage, vehicle speed and transmission type were also discussed. Test modes used in this study were NIER 10 modes and CVS-75 mode, which have been used for developing emission factors and testing new vehicles respectively. The results of this study showed that the main factors which have significant influences on the $CO_2$ emissions are fuel type, transmission type, displacement of vehicle and mileage. The correlation between $CO_2$ emission and FE was also determined by comparing $CO_2$ emission and fuel consumption efficiency. The overall results of this study will greatly contribute to domestic greenhouse gas emissions calculation and designing national strategies for climate change.

Effect of DLC Coating-layer on Engine Wear Characteristics for Improving Fuel Consumption of Automotive Engine (차량연비 향상을 위한 DLC 코팅 층이 엔진 마모특성에 미치는 영향)

  • Kim, Kee-Joo;Yoo, Seok-Jong;Choi, Byung-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.112-119
    • /
    • 2010
  • Recently, as the matters of environmental pollution, the energy exhaustion and alternative energy source have become more important issues, around industrial countries and the effort to improve fuel consumption is progressed continuously for decrease of air pollution. In an effort to improve fuel consumption for passenger cars, the study of DLC (Diamond Like Carbon) coating which is widely known to good wear characteristics come to the forefront. Therefore, in present study, it was investigated to the influence of DLC coating layer for wear characteristics with the piston ring material and then suggested to the development process for advanced automotive engine parts that showed improved wear characteristics. From these results, Finally, it will be contributed to improve the fuel consumption for passenger vehicles.

DESIGN AND CONSTRUCTION ASPECTS OF A ZERO INERTIA CVT FOR PASSENGER CARS

  • Van Druten, R.M.;Van Tilborg, P.G.;Rosielle, P.C.J.N.;Schouten, M.J.W.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • This paper concentrates on the design and construction aspects of a transmission for a mid-class passenger car with internal combustion engine. The transmission, consisting of a Continuously Variable Transmission (CVT) with a Van Doorne V-belt, a planetary gear set and a compact steel flywheel is used to prove the concept of mechanical torque assist. The design goal is to obtain a proof of concept transmission with maximal efficiency, using proven transmission technology. With the developed so called Zero Inertia CVT, the fuel economy of the car is improved by operating the engine at its fuel optimal operating line. To achieve a good vehicle acceleration response, the flywheel assists the powertrain mechanically.

  • PDF

Development of an Active Suspension System for Passenger Cars( I ) : Construction of Prototype Car (승용차용 능동제어식 현가시스템의 개발(1) : 실험차량의 구성)

  • Hong, Y.S.;Hwang, Y.;Kim, D.Y.;Kim, Y.B.;Shim, J.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.73-82
    • /
    • 1994
  • Low-band type active suspension system is implemented on a passenger car. Level. roll, pitch and bouncing motion of body are controlled by a digital controller. Sky-hook damper is applied to control bouncing motion. This paper describes overall construction of the system, design of hydraulic system, sensor system, controller, and control scheme. Performance of prototype car has been evaluated on a test track and reported in the second paper.

  • PDF

Estiamation of Vehicle Sideslip Angle for Four-Wheel Steering Passenger Cars

  • Kim, Hwan-Seoung;You, Sam-Sang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.71-76
    • /
    • 2001
  • This paper deals with an estimation method for sideslip angle by using an unknown disturbance observation technique in 4WS passenger car systems. Firstly, a 4WS vehicle model with 3DOF is derived under the constant velocity and same tyres properties. The vehicle dynamics is transformed into the linear state space model with considering the external disturbances. Secondly, and unknown disturbance observer is introduced and its property which estimating the states of system without any disturbance information is shown. Lastly, the estimated sideslip angle of the 4WS vehicle system is verified through numerical simulation.

  • PDF

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

Study on the design of the passenger cars bumper rail to reduce the weight (자동차 범퍼 레일의 경량화 설계에 관한 연구)

  • 김이규;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.563-566
    • /
    • 2000
  • Recently vehicle development trend puts emphasis on cost reduction and performance improvement through weight reduction, and safety security to protect passenger and chassis against external impact. Primary factors effected on vehicle safety are chassis structure, chassis system, and safety equipment like bumper. Research in part of weight reduction is proceeding actively about prohibition of over-design and material through optimal design method. Bumper in these factors is demanded two of all factors, safety security and weight reduction. It is the part that prohibits or reduces a physical impact in low speed crash. Bumper is composed of a few parts but this study exhibits the shape of bumper rail has a role on energy absorption of safety security and weight reduction from structure analysis of bumper rail's variable shape surface.

  • PDF