• Title/Summary/Keyword: Parylene

Search Result 77, Processing Time 0.025 seconds

반도체 검출기의 절연 최적화를 위한 다층 절연막 평가

  • Park, Jeong-Eun;Myeong, Ju-Yeon;Kim, Dae-Guk;Kim, Jin-Seon;Sin, Jeong-Uk;Gang, Sang-Sik;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.372-372
    • /
    • 2014
  • 반도체 검출기는 입사되는 X선 에너지에 의하여 이온화되어 발생하는 전자 전공쌍을 수집함으로 방사선 정보를 확인하는 선량계로써 많은 연구와 활용이 이루어지고 있다. 하지만, X선 에너지에 의하여 반도체 검출기에서 발생하는 전기적 신호량이 높지 않기 때문에 누설 전류의 저감이 필수적이다. 누설 전류를 저감시키기 위한 방안으로 반도체 층과 전극 층의 Schottky Contact 구조의 설계, Insulating Layer의 사용, 높은 비저항의 반도체 물질 연구 등이 이루어지고 있다. 하지만, 기존에 누설 전류 저감을 위하여 Insulating Layer를 전극층과 반도체 층 사이에 형성하는 연구에 있어서 Insulating Layer와 반도체 층의 계면 사이에서 발생하는 Charge Trapping으로 인하여 생성되는 신호의 Reproducibility 저하, 동영상 적용의 제한 등의 문제점을 겪어왔다. 이에 본 논문에서는 누설 전류를 저감시킴과 동시에 Charge Trapping의 최소화를 이루기 위하여 Insulating Layer의 두께 최적화 연구를 수행하였다. 본 연구에서 사용한 Insulating Layer는 검출기 표면에 입사하는 X선 정보 손실을 최소화 시키는 동시에 누설 전류와 Charge Trapping을 최소화 시키는 방법으로써 CVD방법으로 검출기 표면에 균일하게 Insulating Layer를 코팅하였다. Insulating 물질은 Parylene을 사용하였으며, 그 중 온도, 습도 등 외부환경에 영향을 적게 받는 type C를 사용하였다. 증착에 사용한 장비의 진공도는 Torr로 설정하여 증착되는 Parylene의 두께가 약 $0.3{\mu}m$가 되게 하였으며, 실험에는 반도체 물질 PbO를 사용하였다. Parylene의 절연 특성은 Dark Current와 Sensitivity를 측정한 SNR을 이용하여 Parylene코팅이 되지 않은 동일 반도체 검출기와의 신호를 비교하였으며 또한 Parylene를 다층 제작한 검출기의 수집 신호량을 비교하였다. 제작한 검출기의 X선 조사 시의 수집 전하량 측정 결과, 100 kVp, 100mA, 0.03s의 X선 조건에서 $1V/{\mu}m$의 기준 시, Parylene를 코팅하지 않은 PbO 검출기의 Dark current는 0.0501 nA/cm2, Sensitivity는 0.6422 nC/mR-cm2, SNR은 12.184이었으며, Parylene단층의 두께인 $0.3{\mu}m$로 증착된 시편의 Dark current는 0.04097 nA/cm2, Sensitivity는 0.53732 nC/mR-cm2으로 Dark current가 감소되고 sensitivity도 감소하였지만 SNR은 13.1150으로 높아진 것을 확인할 수 있었다. Perylene이 $0.6{\mu}m$로 증착된 시편의 경우, Dark Current는 0.04064 nA/cm2, Sensitivity는 0.31473 nC/mR-cm2, SNR은 7.7443으로써 Insulating Layer가 없는 시편보다 SNR이 약 40% 낮아진 것을 확인할 수 있었다. Parylene이 $0.9{\mu}m$로 증착된 시편의 경우 Dark current는 0.0378 nA/cm2, Sensitivity 0.0461 nC/mR-cm2로 Insulating Layer가 없는 시편에 비해 SNR은 약 1/12배 감소한 1.2196이었고, Parylene이 $1.2{\mu}m$로 증착된 시편의 SNR은 1.1252로서 더 감소하였다. 따라서 Parylene을 다층 코팅한 검출기일수록 절연 효과의 영향이 커짐으로써 SNR 비교 시 수집되는 신호량이 줄어드는 것을 확인하였다. 반도체 검출기의 누설 전류를 저감시킴과 동시에 신호 수집율에 영향을 최소화시키기 위하여 Insulating Layer의 두께를 적절하게 설정하여 적용하면 Insulating Layer가 없는 검출기에 비해 누설전류를 최소한으로 줄일 수 있고 신호 검출효율이 감소하는 것을 방지할 수 있을 것이라 사료된다.

  • PDF

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C (미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구)

  • Dong-Guk Kim;Deok-kyu Yoon;Yongchan Lee;Min-Uk Kim;Jihyoung Roh;Yohan Seo;Kwan-Su Kang;Young Hun Jeong;Kyung-Ah Kim;Tae-Ha Song
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.404-413
    • /
    • 2023
  • In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.

Surface Modification of Latex with Parylene by Chemical Vapor Deposition (화학기상증착법의 Parylene 코팅에 의한 천연 라텍스 표면개질)

  • Song, Jeom-Sik;Choi, Seo-Yoon;Jung, Seong-Hee;Cha, Gook-Chan;Lee, Suk-Min;Mun, Mu-Seong
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.301-308
    • /
    • 2004
  • Three types of parylene (PA-N, PA-C, PA-D) were used for coating the surface on natural latex rubbers in order to improve surface characteristics including mechanical properties and biocompatibility. The parylene coating was the CVD (chemical vapor deposition) method, and the surface properties of the modified latex were measured. Annealing effects on the mechanical properties of the coated latex were also investigated. The adhesion between latex and parylene was good for all the types of parylene used. As annealing temperature was increased, latex modified with PA-N became more hydrophobic, while the latex treated with PA-C and PA-D became more hydrophilic. As the annealing temperature was raised, the tensile strength was increased, and the elongation was decreased. The biocompatibility was noticeably improved on the latex surface modified with the parylenes through CVD method.

Fabrication and Characteristics of Parylene Coated Isolated Type Pressure Sensor (파릴렌 막이 증착된 봉입형 압력센서의 제작 및 그 특성)

  • 김우정;조용수;김홍균;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • To measure the pressure using semiconductor type pressure sensor in water or chemical solution, the sensor must be protected from the solution using proper packaging materials. stainless steel isolated type pressure sensor packaged with SUS316 can be widely used to measure the pressure in water or chemical due to its high corrosion-resistance and good performance in tensility and welding. Even if the surface of SUS316 has a plenty of nickel and chromium, the SUS316 is highly corrosive in acidic or alkaline solution. We coated parylene and adhesion promoting copper layer are 5${\mu}{\textrm}{m}$ and 200nm, respectively. The parylene coated stainless steel pressure sensor showed good anti-corosive characteristics in various strong acids. The accuracy of pressure sensor wasn't varied after parylene coating with 0.5%FSO.

Hybrid Passivation for a Flexible Organic Light Emitting Diode (다층 구조의 Hybrid flexible 박막 기술 연구)

  • Lee, Whee-Won;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.269-270
    • /
    • 2005
  • A hybrid passivation method using parylene and silicon dioxide combination layer for a flexible organic light emitting diode (FOLED) was applied on a polycarbonate substrate. A parylene coating by vapor polymerization method is a highly effective passivation process for the FOLED, and it applies all top surface and the edges of the FOLED device. In order to minimize the permeation of moisture and oxygen from the top surface of the device, an additional layer of silicon dioxide was deposited over the parylene coated layer. It was found that the water vapor transmittance rate (WVTR) of parylene (15 m-in-thickness) / SiO2 (0.3$\mu$m-in-thickness) combination layers deposited on polycarbonate film was decreased under the value of 10-3 g/m2day. The FOLED with the hybrid passivation showed remarkably longer lifetime characteristics in the ambient conditions than the non-passivated FOLED. The lifetime of the passivated FOLED was 400 hours and it was more than ten times over the lifetime of the convectional non-passivated FOLED.

  • PDF

Study on the surface characteristics of parylene-C films in inductively coupled $O_2/CF_4$ gas plasma

  • Ham, Yong-Hyun;Baek, Kyu-Ha;Park, Kun-Sik;Shin, Hong-Sik;Yun, Ho-Jin;Kwon, Kwang-Ho;Do, Lee-Mi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1399-1401
    • /
    • 2009
  • In this article, we reported the results of etching polymonochloro-para-xylylene (parylene-C) thin films using inductively coupled plasma and $CF_4/O_2$ gas mixture. The $CF_4$ gas fraction increased up to the approximately 16 %, the polymer etch rate increased in the range of 277 - 373 nm/min. It confirmed that the etch rate of the parylene-C mainly depended on the O radical density in the plasma. Using a contact angle measurement, the contact angle increased with increasing the $CF_4$ fraction. Moreover, the contact angle was highly related a $CF_x$ functional group on parylene films.

  • PDF

Utilities of Parylene buffer layer in H:LiNbO$_{3}$ optical modulator (H:LiNbO$_{3}$ 광변조기에서 Parylene 버퍼층의 유용성)

  • Huh, Hyun;Pan, Jae-Kyung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.80-86
    • /
    • 1997
  • H:LiNbO$_{3}$ optical modulator buffered by parylene layer, which has a merits in the bandwidth, power consumption and fabrication as compared with conventional SiO$_{2}$ buffered optical modulator, is proposed and analyzed. The dependences of velocity matching condition, charcteristics impedance, and driving voltage on dielectric constants, thickness of buffer layer, and electrode configurations are demonstrated with finite element calculation. And we performed the physical and chemical test of parylene buffer layer deposited on LiNbO$_{3}$ and under Au electrodes.

  • PDF

Passivation for flexible organic light emitting diodes using parylene

  • Choi, Sung-Hoon;Oh, Myung-Hwan;Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.996-998
    • /
    • 2004
  • In this study, we tested parylene as the passivation layer for flexible organic light emitting diodes (FOLEDs).Parylene as passivtion layer has several advantages which are good optical transparent and low moisture penetration. For more an effective passivation of FOLEDs, we suggest hybrid passivation layer with parylene and silicon oxide. We compared electrical properties and stability of the device with and without passivation layer. The lifetime of FOLED with hybrid passivation layer was increased over three times than that of non-passivated of FOLED.

  • PDF

Utilization of Parylene Thin Film for Passivation of Organic Light Emitting Diodes

  • Lee, Jun-Ho;Kim, Jeong-Moon;Lee, Jong-Seung;Park, Moo-Ryoung;Park, Chin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.750-753
    • /
    • 2002
  • The chemical vapor condensation process of Parylene-N thin films was investigated and applied to the passivation of the organic light emitting diodes (OLEDs). The effects of process variables on the deposition rate were studied, and it was found that the deposition rate of Parylene increases with increasing precursor sublimation temperature but decreases with increasing substrate temperature. The Parylene film was used as a passivation layer for OLEDs, and as a result, the lifetime of the passivated OLEDs was increased by a factor of about 2.3 compared with that of non-passivated OLEDs.

  • PDF

Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers

  • Park, Dae Young;Byun, Hye Ryung;Kim, Hyojung;Kim, Bora;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1787-1793
    • /
    • 2018
  • The power conversion efficiency of perovskite solar cells has reached 23.3%. Although significant developments have been made through intensive studies, the stability issue is still challenging. Passivation of perovskite solar cells with a transparent polymer provides better stability; however, there are a few disadvantages of organic polymer such as low thermal stability, weak adhesion and the lack of water retention ability. In this work, we prepared a dual Parylene-F/C layer with 3-methacryloxypropyltrimethoxysilane, A-174, to combine the advantages of organic and inorganic materials. As a result, A-174 treated dual Parylene-F/C layer demonstrated improved passivation effects compared to a single Parylene layer due to the strong binding of Parylene and the water retention ability by $SiO_2$ formed from A-174. This synergetic effects can be expanded to the combination of other organic materials and organosilane compounds.