• 제목/요약/키워드: Particulate organic matter

검색결과 257건 처리시간 0.026초

복합토지이용 유역의 수질 관리를 위한 미측정 용존유기탄소 농도 추정 (Development of Regression Models for Estimation of Unmeasured Dissolved Organic Carbon Concentrations in Mixed Land-use Watersheds)

  • 박민경;범진아;정민혁;정지연;윤광식
    • 한국물환경학회지
    • /
    • 제39권2호
    • /
    • pp.162-174
    • /
    • 2023
  • In order to prevent water pollution caused by organic matter, Total Organic Carbon(TOC) has been adopted indicator and monitored. TOC can be divided into Dissolved Organic Carbon(DOC) and Particulate Organic Carbon(POC). POC is largely precipitated and removed during stream flow, which making DOC environmentally significant. However, there are lack of studies to define spatio-temporal distributions of DOC in stream affected by various land use. Therefore, it is necessary to estimate the past DOC concentration using other water quality indicators to evaluate status of watershed management. In this study, DOC was estimated by correlation and regression analysis using three different organic matter indicators monitored in mixed land-use watersheds. The results of correlation analysis showed that DOC has the highest correlation with TOC. Based on the results of the correlation analysis, the single- and multiple-regression models were developed using Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), and TOC. The results of the prediction accuracy for three different regression models showed that the single-regression model with TOC was better than those of the other multiple-regression models. The trend analysis using extended average concentration DOC data shows that DOC tends to decrease reflecting watershed management. This study could contribute to assessment and management of organic water pollution in mixed land-use watershed by suggesting methods for assessment of unmeasured DOC concentration.

배출가스 중 응축성미세먼지 특성 연구 (A Study on the Characteristics of Condensable Fine Particles in Flue Gas)

  • 공부주;김종현;김혜리;이상보;김형천;조정화;김정훈;강대일;박정민;홍지형
    • 한국대기환경학회지
    • /
    • 제32권5호
    • /
    • pp.501-512
    • /
    • 2016
  • The study evaluated methods to measure condensable fine particles in flue gases and measured particulate matter by fuel and material to get precise concentrations and quantities. As a result of the method evaluation, it is required to improve test methods for measuring Condensable Particulate Matter (CPM) emitted after the conventional Filterable Particulate Matter (FPM) measurement process. Relative Standard Deviation (RSD) based on the evaluated analysis process showed that RSD percentages of FPM and CPM were around 27.0~139.5%. As errors in the process of CPM measurement and analysis can be caused while separating and dehydrating organic and inorganic materials from condensed liquid samples, transporting samples, and titrating ammonium hydroxide in the sample, it is required to comply with the exact test procedures. As for characteristics of FPM and CPM concentrations, CPM had about 1.6~63 times higher concentrations than FPM, and CPM caused huge increase in PM mass concentrations. Also, emission concentrations and quantities varied according to the characteristics of each fuel, the size of emitting facilities, operational conditions of emitters, etc. PM in the flue gases mostly consisted of CPM (61~99%), and the result of organic/inorganic component analysis revealed that organic dusts accounted for 30~88%. High-efficiency prevention facilities also had high concentrations of CPM due to large amounts of $NO_x$, and the more fuels, the more inorganic dusts. As a result of comparison between emission coefficients by fuel and the EPA AP-42, FPM had lower result values compared to that in the US materials, and CPM had higher values than FPM. For the emission coefficients of the total PM (FPM+CPM) by industry, that of thermal power stations (bituminous coal) was 71.64 g/ton, and cement manufacturing facility (blended fuels) 18.90 g/ton. In order to estimate emission quantities and coefficients proper to the circumstances of air pollutant-emitting facilities in Korea, measurement data need to be calculated in stages by facility condition according to the CPM measurement method in the study. About 80% of PM in flue gases are CPM, and a half of which are organic dusts that are mostly unknown yet. For effective management and control of PM in flue gases, it is necessary to identify the current conditions through quantitative and qualitative analysis of harmful organic substances, and have more interest in and conduct studies on unknown materials' measurements and behaviors.

Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health

  • Kibet, Joshua;Bosire, Josephate;Kinyanjui, Thomas;Lang'at, Moses;Rono, Nicholas
    • Journal of Forest and Environmental Science
    • /
    • 제33권2호
    • /
    • pp.113-121
    • /
    • 2017
  • In flight particulate matter particularly emissions generated by incomplete combustion processes has become a subject of global concern due to the health problems and environmental impacts associated with them. This has compelled most countries to set standards for coarse and fine particles due to their conspicuous impacts on environment and public health. This contribution therefore explores forest fire emissions and how its particulates affects air quality, damage to vegetation, water bodies and biological functions as architects for lung diseases and other degenerative illnesses such as oxidative stress and aging. Soot was collected from simulated forest fire using a clean glass surface and carefully transferred into amber vials for analysis. Volatile components of soot were collected over 10 mL dichloromethane and analyzed using a QTOF Premier-Water Corp Liquid Chromatography hyphenated to a mass selective detector (MSD), and Gas Chromatograph coupled to a mass spectrometer (GC-MS). To characterize the size and surface morphology of soot, a scanning electron microscope (SEM) was used. The characterization of molecular volatiles from simulated forest fire emissions revealed long chain compounds including octadec-9-enoic acid, octadec-6-enoic acid, cyclotetracosane, cyclotetradecane, and a few aromatic hydrocarbons (benzene and naphthalene). Special classes of organics (dibenzo-p-dioxin and 2H-benzopyran) were also detected as minor products. Dibenzo-p-dioxin for instance in chlorinated form is one of the deadliest environmental organic toxins. The average particulate size of emissions using SEM was found to be $11.51{\pm}4.91{\mu}m$. This study has shown that most of the emissions from simulated forest fire fall within $PM_{10}$ particulate size. The molecular by-products of forest fire and particulate emissions may be toxic to both human and natural ecosystems, and are possible precursors for various respiratory ailments and cancers. The burning of a forest by natural disasters or man-made fires results in the destruction of natural habitats and serious air pollution.

하천에서 BOD 존재형태별 분포 특성 (The Fractionation Characteristics of BOD in Streams)

  • 김호섭;오승영
    • 한국물환경학회지
    • /
    • 제37권2호
    • /
    • pp.92-102
    • /
    • 2021
  • In this study, the distribution characteristics according to the type of BOD and the effect of nitrogenous oxygen demand (NOD) and algal oxygen demand on BOD in three streams (Bokhacheon, Byeongseongcheon, and Gulpocheon) were evaluated. Although the BOD and NOD concentrations demonstrated a difference in the three streams, the carbonaceous BOD(CBOD)/BOD ratio was 0.75 (p=0.053, one-way ANOVA), and there was no significant difference in the three streams (r2≥0.92, p<0.0001). The NOD concentration of the Bokhacheon with high NH3-N was 1.7±1.3 mg/L, which was the highest among the three streams and showed a significant correlation with BOD. Seasonal variations in NOD in the three streams did not show a significant correlation with changes in NH3-N concentration (r2<0.28, p≥0.1789), and there was no significant difference in NOD even though NH3-N concentration in Gulpocheon was about twice that of Byeongseongcheon (p=0.870, one way ANOVA). The particulate CBOD(PCBOD)/CBOD ratio of the three streams was 0.55~0.64, and about 60% of the biodegradable organic matter was present in the particulate form. When the Chl.a concentration in the stream was more than 7 ㎍/L, the PCBOD tended to increase with the Chl.a concentration (r2=0.61, p=0.003). In the three streams, particulate NOD accounted for 81% of NOD; however, despite the large variation in NH3-N concentration (0.075~3.182 mg/L), there was no significant difference in soluble NOD(SNOD) concentration that ranged from 0.1 to 0.3 mg/L. In this study, the low contribution rate of SNOD to NOD is considered as a result of the removal of nitrifying bacteria along with the particles during the filtration process.

대기중 복합물질의 돌연변이원성과 인체 위해도 (Health Risk of Airborne Complex Mixtures Based on their Mutagenicity)

  • 박성은;정용
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.269-278
    • /
    • 1996
  • Airborne suspended particulates were collected by an Andersen high volume air sampler in a traffic area of Seoul from September 1990 to August 1991. Origanic matter extracted from particulates, their fractions, namely acidic, basic, neutral and carcinogenic subfractions (PAHs, nitroarenes) in neutral fractions were assayed for mutagenicity on TA98, TA100 and TA98NR deficient Salmonella strains, use of the pre-incubation method. The relative contribution to total mutanenicity of organic matters was highest in neutral fraction and was lowest in basic fraction. Among subfractions, that of neutral fraction was higher nitroarenes subfraction compared to PAHs subfraction. While the carcinogenic effect of benzo[a]pyrene was calculated as 0.96 persons/million persons based on unit risk estimates by extrapolation method, life time excess cancer risk estimate of EOM, neutral, PAH fraction based on their mutagenicity was calculated as 52, 42, 3.8 persons/million persons, respectively. These findings indicate that the mutagenic hazard of the partciculate, air organic complex mixture, may be dependent upon the mutagen composition in the particulate and interactions each of them. Therfore, health risk from air organic complex mixtures based on mutagenicity might be useful indicator for evaluation of actual risk.

  • PDF

표층수를 방류하는 저수지(용담호)에서 몬순 탁수환경의 공간적 해석 (Spatial Interpretation of Monsoon Turbid-water Environment in a Reservoir (Yongdam) Discharging Surface Water, Korea)

  • 신재기;허진;이흥수;박재충;황순진
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.933-942
    • /
    • 2006
  • In this study, temperature, turbidity, suspended paniculate matter (SPM) distribution and mineral characteristics were investigated to explain spatial distribution of the turbid-water environment of Yongdam reservoir in July, 2005. Six stations were selected along a longitudinal axis of the reservoir and sampling was conducted in four depths of each station. Water temperature was showed the typical stratified structure by the effects of irradiance and inflow. Content of inorganic matter in suspended particles increased with the concentration of suspended particulate matter (SPM) due to the reduction of ash-free dry matter (AFDM). Turbidity ranged from 0.6 to 95.1 NTU and the maximum turbidity value of each station sharply increased toward downstream from upstream. The high turbidity layers were located at the depth between 12~16 m. Particle size ranged from 0.435 to $482.9{\mu}m$. day and silt-sized particles corresponded 91.9~98.9% and 1.1~8.0% in total numbers of SPM, respectively. Turbidity showed high correlations with clay (r=0.763, p<0.05) and silt content (r=0.870, p<0.05).Inorganic matter content (r=0.960, p<0.01) was more correlated with turbidity than organic matter (r=0.823, p<0.05). Mineral characterization using x-ray diffraction and electron probe microanalyzer demonstrated that the major minerals contained in the SPM were kaolinite, illite, vermiculite and smectite. As results of this study, surface water discharge as well as small size of the SPM were suggested as long-term interfering factors in settling down the turbid water in the reservoir.

공기 중 미세먼지와 휘발성유기화합물 제거를 위한 활성탄 전기방사 필터 연구 (Study on Electrospun Activated Carbon Mats for the Filtration of Particulate Matter and Volatile Organic Compound in the Air)

  • 한상일
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.356-360
    • /
    • 2018
  • 인구증가와 개발 도상 국가의 산업 활동 증가로 인해 대기 중 미세먼지농도가 상승함에 따라 생태계에 미치는 영향이 심각해지고 있다. 그로인해 미세먼지발생을 줄이기 위한 정책을 수립하여 시행하거나 미세먼지를 여과해주는 공기청정기나 마스크의 연구가 활발히 이루어지고 있다. 본 연구에서는 전기방사실험을 통해 셀룰로스 아세테이트 파이버 필터를 제조하고 고분자용액에 활성탄을 첨가하여 미세입자 제거에 미치는 활성탄의 영향을 평가하였다. 미세입자 생성을 위해 염화나트륨 수용액을 사용하였으며, 공기 중 수분의 영향을 배제하기 위해 건조기를 설치하여 수분을 제거한 후 필터 성능을 분석하였다. 활성탄이 첨가될수록 미세입자 제거 효율은 증가하였으며, 아세톤 흡착량 또한 증가하였다.

COMBINED EFFECTS OF BD20, LOW SULFUR DIESEL FUEL AND DIESEL OXIDATION CATALYST IN A HD DIESEL ENGINE

  • Baik, D.S.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.653-658
    • /
    • 2006
  • The enormous increase in the use of fossil energy sources throughout the world has caused severe air pollution and a depletion of energy. Besides, it seems very difficult to comply with the upcoming stringent emission standards in vehicles. In order to develop low emission engines, research on better qualified fuels as alternative fuels to secure high engine performance becomes a more important issue than ever. Since sulfur contained in diesel fuel is transformed in sulfate-laden particulate matters when a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. But the excessive reduction of sulfur levels may cause the lubricity of fuel and engine performance to degrade. In this aspect, biodiesel fuel derived from rice bran is applied to compensate viscosity lost in the desulfurization treatment. This research is focused on the performance of an 11,000cc diesel engine and the emission characteristics by the introduction of ULSD(Ultra Low Sulfur Diesel), BD20(Diesel 80%+Biodiesel 20%) and a diesel oxidation catalyst, where BD20 is used to improve the lubricity of fuel in fuel injection systems as fuel additives or alternative fuels.

여자만 북서부 꼬막양식어장의 해양환경 특성. 1. 먹이생물로서 Chlorophyll a 농도, 입자태 유기탄소 및 유기질소의 시·공간적 분포 특성 (A Charecteristics of Marine Environments in a Blood Cockle Farm of the Northwestern Yeoja Bay, Korea. 1. Spatio-temporal Distributions of Chlorophyll a Concentration, Particulate Organic Carbon & Nitrogen)

  • 윤양호
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.299-309
    • /
    • 2019
  • 여자만 북서해역에 위치하는 꼬막 양식어장의 해양환경 중 먹이생물 특성을 파악하기 위해 2017년 5월에서 11월까지 계절별로 7개 정점의 표층과 저층을 대상으로 조사를 실시하여, 먹이생물 항목인 Chlorophyll a (Chl-a), 입자태 유기탄소(POC), 입자태 유기질소(PON) 및 POC/PON ratio, POC/Chl-a ratio 등을 분석 및 산출하였다. 결과 Chl-a 농도, POC 및 PON은 각각 $1.69-7.68{\mu}g{\cdot}L^{-1}$(표층 평균 $3.48{\mu}g{\cdot}L^{-1}$), 0.88-2.58 mM(평균 1.97 mM) 및 0.17-0.90 mM(평균 0.54 mM)을 나타내어, 봄과 여름에 높고 가을에 낮은 농도를 보였다. 우점 출현하여, 기존 결과와는 다른 결과를 나타내었다. 수층별로는 Chl-a와 POC는 저층이 표층보다 높았고, PON은 표층이 저층보다 높았다. POC/PON ratio 및 POC/Chl-a ratio는 각각 1.56-7.88 (표층 평균 3.71) 및 216-967 (표층 평균 700)를 나타내어, 탄소원 대부분은 표층퇴적물에 침강 축적된 입자태 유기물로서 식물플랑크톤에 의한 기여부분이 낮은 것으로 평가되었다. 이러한 결과는 여자막 북서해역의 꼬막양식장의 먹이자원은 양적으로는 풍부한 것처럼 보이지만, 질적으로는 매우 불량한 것으로 평가되었다.

안정동위원소 비를 이용한 하구 갯벌에 있어서 저서 무척추 동물의 유기물 기원의 공간적 특성 (Spatial Characteristic in Food Sources for Benthic Invertebrates in an Estuary Tidal flat: Carbon and Nitrogen Stable Isotope Analyses)

  • 신우석;이용두
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권1호
    • /
    • pp.53-59
    • /
    • 2010
  • 일본 나나키다 하구 갯벌에 있어서 탄소 질소 안정동위원소를 이용해 먹이 연쇄의 공간적 가변성에 대해 조사했다. 서로 다른 특징을 갖고 있는 갯벌에서 잠재적인 유기물(육상식물, 해양 입자성 유기물, 저서 부착 미세조류 및 하구 입자성 유기물), 퇴적유기물 및 저서 무척추 동물(Nuttallia olivacea and Nereidae)에 대한 샘플링을 행했다. 본 연구의 목적은 좁은 공간적 가변성에 따른 Nuttallia olivacea와 Nereidae의 먹이원을 결정하는 것이다. 육상식물(${\delta}^{13}C=-26.6{\pm}0.76$, ${\delta}^{15}N=2.7{\pm}0.31$) 과 하구 입자성 유기물(${\delta}^{13}C=-25.5{\pm}0.13$, ${\delta}^{15}N=5.2{\pm}0.46$)은 저서 부착 미소조류${\delta}^{13}C=-16.3$, ${\delta}^{15}N=6.2$)와 해양 입자성 유기물(${\delta}^{13}C=-19.6{\pm}0.08$, ${\delta}^{15}N=8.9{\pm}1.70$)의 탄소 질소 안정동위원소비 보다 낮았다. 퇴적물의 탄소 안정동위원소 비는 -27.4~-22.8‰ 나타냈으며, 하구에서 하천 방향으로 갈수록 낮은 탄소 안정동위 원소비를 나타냈다. 저서 무척추 동물의 탄소 질소 안정동위원소비는 각각 -22.8~-18.4‰, 8.1~11.9‰ 범위를 나타냈다. 이러한 결과와 더불어 혼합 모델을 이용해 저서 무척추 동물의 먹이원의 기여율을 추정한 결과 해양 입자성유기물과 저서 부착 미세조류의 기여율은 높았지만, 육상식물과 하구 입자성 유기물의 기여율은 비교적 낮았다. 이러한 저서 무척추 동물의 먹이 기여는 각 장소마다 계절 및 물리적 환경 요소의 영향을 받는다고 사료된다.