• 제목/요약/키워드: Particulate exposure concentration

검색결과 93건 처리시간 0.028초

서울시 도로변의 $PM3.5/NO_2$ 농도비 및 구두수선대 근로자의 노출평가 ($PM3.5/NO_2$ Concentration Ratio in Roadside and Exposure Assessment of Shoes Repairmen in Seoul)

  • 배현주;양원호;김나리;정문호
    • 환경위생공학
    • /
    • 제16권4호
    • /
    • pp.21-30
    • /
    • 2001
  • Vehicles, especially diesel-using, are a major source of airborne particulate matter(PM), nitrogen dioxide($NO_2$) and so on in metropolitan cities such as Seoul. Therefore workers, who are mainly merchants, near roadside may be highly exposed to air pollutants from exhausted emissions of vehicles. This means that occupational type and location can affect the workers'health by exposure to outdoor pollutions of ambient as well as indoor pollutions of working condition, respectively. In this study, we simultaneously measured the PM3.5 and $NO_2$concentrations in indoor and outdoor of shoes repair shops in Seoul, which were generally located at roadside in Korea. Shoes repairmen were highly exposed to PM3.5 and $NO_2$ both indoor and outdoor of repair shops comparing with other sub-population groups. High exposure to air pollutants for shoes repairmen was considered to be outdoor source from exhausted emission of vehicles and indoor source from working condition. The $PM3.5/NO_2$ concentration ratio was $1.17{\pm}$0.59 in roadside, of which ratio was higher 7han ratios of other studies. This result suggested that major air pollutant in Seoul was fine particle. Also, this PM3.5 to $NO_2$ ratio will be used in environmental exposure and risk assessment by estimation of PM3.5 concentration as measuring the only $NO_2$ concentration with small and accurate $NO_2$ passive sampler.

  • PDF

입자상 대기오염물질의 건강 위해성 평가를 위한 국내 농도반응함수 도출 (Concentration Response Functions for Particulate Matter related Health Risk Assessment in South Korea)

  • 하종식
    • 한국환경보건학회지
    • /
    • 제43권3호
    • /
    • pp.202-213
    • /
    • 2017
  • Objectives: HRA (Health Risk Assessment) is an important tool for measuring the health impacts of air pollution. HRA is already being used widely as an important reference for crafting air pollution policies. However, the absence of a domestic CRF (Concentration Response Function) standard, which is a main component for HRA, could cause confusion amongst policy-makers. The purpose of this study is to tabulate a domestic CRF standard for a PM (Particulate Matter)-related HRA. Methods: This study suggested a domestic CRF standard for HRA thorough a literature review. The literature review for meta-analysis was limited to the English language for epidemiological studies published from January 1980 to March 2016. This meta-analysis was conducted by assuming both fixed- and random-effects of CRF. In addition, studies that reported HRA of air pollution for WHO (World Health Organization), the EC (European Commission), and the EPA (Environmental Protection Agency) were reviewed to compare the CRFs of South Korea to the recommended CRFs of WHO, the EC, or the EPA. Additionally, a domestic CRF standard was supplemented by these. Results: Nineteen studies were selected for the CRF for South Korea. Fifty-three CRFs were derived for meta-analysis. CRFs with a standard for PM-related HRA were divided according to the following four criteria: air pollution, exposure characteristics, type of health impact, and age group. Finally, a domestic CRF standard was created comprised of 21 CRFs. Among these, six CRFs were derived from the results of foreign HRA studies. Conclusions: This study is important in that a domestic CRF standard is first suggested. In addition, this study suggests a further area of study for using HRA as a policy tool and a direction of epidemiological study.

국내 지역별 미세먼지 농도 리스크 분석 (Regional Analysis of Particulate Matter Concentration Risk in South Korea)

  • 오장욱;임태진
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.157-167
    • /
    • 2017
  • Millions of People die every year from diseases caused by exposure to outdoor air pollution. Especially, one of the most severe types of air pollution is fine particulate matter (PM10, PM2.5). South Korea also has been suffered from severe PM. This paper analyzes regional risks induced by PM10 and PM2.5 that have affected domestic area of Korea during 2014~2016.3Q. We investigated daily maxima of PM10 and PM2.5 data observed on 284 stations in South Korea, and found extremely high outlier. We employed extreme value distributions to fit the PM10 and PM2.5 data, but a single distribution did not fit the data well. For theses reasons, we implemented extreme mixture models such as the generalized Pareto distribution(GPD) with the normal, the gamma, the Weibull and the log-normal, respectively. Next, we divided the whole area into 16 regions and analyzed characteristics of PM risks by developing the FN-curves. Finally, we estimated 1-month, 1-quater, half year, 1-year and 3-years period return levels, respectively. The severity rankings of PM10 and PM2.5 concentration turned out to be different from region to region. The capital area revealed the worst PM risk in all seasons. The reason for high PM risk even in the yellow dust free season (Jun. ~ Sep.) can be inferred from the concentration of factories in this area. Gwangju showed the highest return level of PM2.5, even if the return level of PM10 was relatively low. This phenomenon implies that we should investigate chemical mechanisms for making PM2.5 in the vicinity of Gwangju area. On the other hand, Gyeongbuk and Ulsan exposed relatively high PM10 risk and low PM2.5 risk. This indicates that the management policy of PM risk in the west side should be different from that in the east side. The results of this research may provide insights for managing regional risks induced by PM10 and PM2.5 in South Korea.

제철소 주변지역의 대기 중 미세먼지 및 중금속 농도에 관한 연구 (A Study on the Concentration of Fine Particles and Heavy Metals in Iron Works)

  • 조태진;정만호;전준민;손부순
    • 한국환경과학회지
    • /
    • 제18권4호
    • /
    • pp.401-409
    • /
    • 2009
  • The results of particulate matters level and heavy metal concentration, which surveyed in Gwang-Yang, Dang-Jin steel industry area, are as follows; The $PM_{2.5}$, $PM_{10}$ of exposure area are $22.3{\mu}g/m^3$, $40.4{\mu}g/m^3$ each in Kum-Ho dong, and $28.1{\mu}g/m^3$, 51.5 each in Jung dong. The $PM_{2.5}$, $PM_{10}$ of control area are $16.4{\mu}g/m^3$, $29.5{\mu}g/m^3$ each in Bonggang-myeon. The level is higher in exposure area than control area. In case of Dang Jin, the concentration of $PM_{10}$ and $PM_{2.5}$ is higher in exposure area than control area ($PM_{2.5}-20.4{\mu}g/m^3$, $PM_{10}-39.2{\mu}g/m^3$). The Pb level of Dang Jin area is higher in exposure area ($0.13{\mu}g/m^3$) than control area ($0.1{\mu}g/m^3$) and both Gwang-Yang and Dang-Jin area lower level than the Guideline level of Korea EPA.

지역간 상대위험도 변동을 고려한 미세먼지 기인 질병부담 및 사회경제적 비용 추정 연구 (Health and Economic Burden Attributable to Particulate Matter in South Korea: Considering Spatial Variation in Relative Risk)

  • 변가람;최용수;길준수;차준일;이미혜;이종태
    • 한국환경보건학회지
    • /
    • 제47권5호
    • /
    • pp.486-495
    • /
    • 2021
  • Background: Particulate matter (PM) is one of the leading causes of premature death worldwide. Previous studies in South Korea have applied a relative risk calculated from Western populations when estimating the disease burden attributable to PM. However, the relative risk of PM on health outcomes may not be the same across different countries or regions. Objectives: This study aimed to estimate the premature deaths and socioeconomic costs attributable to long-term exposure to PM in South Korea. We considered not only the difference in PM concentration between regions, but also the difference in relative risk. Methods: National monitoring data of PM concentrations was obtained, and missing values were imputed using the AERMOD model and linear regression model. As a surrogate for relative risk, hazard ratios (HRs) of PM for cardiovascular and respiratory mortality were estimated using the National Health Insurance Service-National Sample Cohort. The nation was divided into five areas (metropolitan, central, southern, south-eastern, and Gangwon-do Province regions). The number of PM attributable deaths in 2018 was calculated at the district level. The socioeconomic cost was derived by multiplying the number of deaths and the statistical value of life. Results: The average PM10 concentration for 2014~2018 was 45.2 ㎍/m3. The association between long-term exposure to PM10 and mortality was heterogeneous between areas. When applying area-specific HRs, 23,811 premature deaths from cardiovascular and respiratory disease in 2018 were attributable to PM10 (reference level 20 ㎍/m3). The corresponding socioeconomic cost was about 31 trillion won. These estimated values were higher than that when applying nationwide HRs. Conclusions: This study is the first research to estimate the premature mortality caused by long-term exposure to PM using relative risks derived from the national population. This study will help precisely identify the national and regional health burden attributed to PM and establish the priorities of air quality policy.

인구 유동에 따른 서울시 대기 중 초미세먼지 농도 변화 요인 분석 및 노출평가 (Analysis and Exposure Assessment of Factors That Affect the Concentration of Ambient PM2.5 in Seoul Based on Population Movement)

  • 우재민;신지훈;민기홍;김동준;성경화;조만수;우병열;양원호
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.6-15
    • /
    • 2024
  • Background: People's activities have been restricted due to the COVID-19 pandemic. These changes in activity patterns may lead to a decrease in fine particulate matter (PM2.5) concentrations. Additionally, the level of population exposure to PM2.5 may be changed. Objectives: This study aimed to analyze the impact of population movement and meteorological factors on the distribution of PM2.5 concentrations before and after the outbreak of COVID-19. Methods: The study area was Guro-gu in Seoul. The research period was selected as January to March 2020, a period of significant population movement changes caused by COVID-19. The evaluation of the dynamic population was conducted by calculating the absolute difference in population numbers between consecutive hours and comparing them to determine the daily average. Ambient PM2.5 concentrations were estimated for each grid using ordinary kriging in Python. For the population exposure assessment, the population-weighted average concentration was calculated by determining the indoor to outdoor population for each grid and applying the indoor to outdoor ratio to the ambient PM2.5 concentration. To assess the factors influencing changes in the ambient PM2.5 concentration, a statistical analysis was conducted, incorporating population mobility and meteorological factors. Results: Through statistical analysis, the correlation between ambient PM2.5 concentration and population movement was positive on both weekends and weekdays (r=0.71, r=0.266). The results confirmed that most of the relationships were positive, suggesting that a decrease in human activity can lead to a decrease in PM2.5 concentrations. In addition, when population-weighted concentration averages were calculated and the exposure level of the population group was compared before and after the COVID-19 outbreak, the proportion of people exceeding the air quality standard decreased by approximately 15.5%. Conclusions: Human activities can impact ambient concentrations of PM2.5, potentially altering the levels of PM2.5 exposure in the population.

Inhalation Toxicity of Particulate Matters Doped with Arsenic Induced Genotoxicity and Altered Akt Signaling Pathway in Lungs of Mice

  • Park, Jin-Hong;Kwon, Jung-Taek;Minai-Teherani, Arassh;Hwang, Soon-Kyung;Chang, Seung-Hee;Lim, Hwang-Tae;Cho, Hyun-Seon;Cho, Myung-Haing
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.261-266
    • /
    • 2010
  • In the workplace, the arsenic is used in the semiconductor production and the manufacturing of pigments, glass, pesticides and fungicides. Therefore, workers may be exposed to airborne arsenic during its use in manufacturing. The purpose of this study was to evaluate the potential toxicity of particulate matters (PMs) doped with arsenic (PMs-Arsenic) using a rodent model and to compare the genotoxicity in various concentrations and to examine the role of PMs-Arsenic in the induction of signaling pathway in the lung. Mice were exposed to PMs $124.4{\pm}24.5\;{\mu}g/m^3$ (low concentration), $220.2{\pm}34.5\;{\mu}g/m^3$ (middle concentration), $426.4{\pm}40.3\;{\mu}g/m^3$ (high concentration) doped with arsenic $1.4\;{\mu}g/m^3$ (Low concentration), $2.5\;{\mu}g/m^3$ (middle concentration), $5.7\;{\mu}g/m^3$ (high concentration) for 4 wks (6 h/d, 5 d/wk), respectively in the whole-body inhalation exposure chambers. To determine the level of genotoxicity, Chromosomal aberration (CA) assay in splenic lymphocytes and Supravital micronucleus (SMN) assay were performed. Then, signal pathway in the lung was analyzed. In the genotoxicity experiments, the increases of aberrant cells were concentration-dependent. Also, PMs-arsenic caused peripheral blood micronucleus frequency at high concentration. The inhalation of PMs-Arsenic increased an expression of phosphorylated Akt (p-Akt: protein kinase B) and phpsphorylated mammalian target of rapamycin (p-mTOR) at high concentration group. Taken together, inhaled PMs-Arsenic caused genotoxicity and altered Akt signaling pathway in the lung. Therefore, the inhalation of PMs-Arsenic needs for a careful risk assessment in the workplace.

Environment Parameters Affecting Heavy Metal Concentration in Sand Collected from Children Playground in Seoul Metropolitan Area

  • An, Hyunsun;Kim, Juhee;Hyun, Seunghun
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.193-202
    • /
    • 2013
  • The concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), and arsenic (As) in sand samples collected from selected children's playground and their correlation with environmental parameters, such as concentration of particulate matter in the atmosphere ($PM_{10}$), apartment age (> 5 years), clay and organic matter contents in sand samples, were analyzed. The average heavy metal concentration in samples was 0.040 mg $kg^{-1}$ for Cd, 0.200 mg $kg^{-1}$ for Cr, 1.75 mg $kg^{-1}$ for Cu, 15.1 mg $kg^{-1}$ for Ni, 3.42 mg $kg^{-1}$ for Pb, 66.7 mg $kg^{-1}$ for Zn and 0.750 mg $kg^{-1}$ for As, all of which were below the environmental regulatory level established by Korea Ministry of Environment. However, in the consideration of direct and oral exposure by children to playground sand, the risk of the concentration range in the samples might be greatly enhanced. Heavy metal concentration in samples collected from high $PM_{10}$ (> $70{\mu}gm^{-3}$) area was slightly greater than in samples from low $PM_{10}$ (< $70{\mu}gm^{-3}$), indicating the contribution of particulate matter in air phase to heavy metal concentration in playground sand samples. The concentrations of both Cd and Pb were the highest in apartments older than 21 years (0.050 mg $kg^{-1}$ and 5.28 mg $kg^{-1}$ for Cd and Pb respectively) and showed positive correlation with apartment age (p<0.01 and p<0.001 for Cd and Pb, respectively). Clay content in playground sands ranged 3.8~11.2% and was positively correlated with heavy metal concentration. Organic matter content was negligible (mostly < 0.1%) and showed poor correlation with heavy metal concentration. In conclusion, concentration of heavy metals in playground sand was found to be predominantly influenced by the apartment age and clay content in sand samples and supplemented by dust deposition of particulate matter ($PM_{10}$) from atmosphere.

The effect of short-term particular matter2.5 exposure on asthma attacks in asthma children in Fukuoka, Japan

  • Lee, Song Han;Lee, Koh Woon;Hwang, Yoon Ha;Odajima, Hiroshi
    • 고신대학교 의과대학 학술지
    • /
    • 제33권2호
    • /
    • pp.171-180
    • /
    • 2018
  • Objectives: We investigated whether asthma attacks in asthmatic children were caused by short-term exposure to particulate $matter(PM)_{2.5}$. Methods: Subjects were 411 patients who received inhalation therapy in National Fukuoka Hospital, from March to May 2013. All subjects were outpatients. We surveyed the air quality measurement results in the stations closest to the address of the patients. Data were used from the City of Fukuoka website data on air pollution. We carried out a case-crossover study and compared $PM_{2.5}$ concentration between 7 days after asthma attack occurred and the day asthma attack occurred and 1, 2 and 3 days before asthma attack occurred. Results: Highest hourly concentration of the day (OR 1.013, 95%CI 1.000-1.025) showed a significant association with 1 day before $PM_{2.5}$ concentration statistically. And 0-1 year-old infants were more vulnerable to the highest concentration of 1 day before $PM_{2.5}$ concentration(P < 0.05). Average concentration of $NO_2$ and $O_3$ and asthma attack also showed a significant association. Conclusions: Maximal daily $PM_{2.5}$ concentrations within 24 hours prior to the attack affect asthma exacerbation. 0-1 year-old infants are particularly vulnerable to $PM_{2.5}$ concentration. Asthma exacerbation is aggravated by $NO_2$ and $O_3$ concentration on the day of the asthma attack.

식당 종업원의 환경 담배 연기(ETS)의 노출과 머리카락 중 생체지표 연구 (The Study to ETS Exposure and Their Biomarkers in Hair of Restaurant Workers)

  • 조성준
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권2호
    • /
    • pp.169-176
    • /
    • 2004
  • ETS (environmental tobacco smoke) is composed of exhaled mainstream smoke (MS) from the smoker, sidestream smoke (SS) emitted from the smoldering tobacco between puffs and contaminants that diffuse through the cigarette paper and mouth between puffs. These emissions contain both vapor phase and particulate contaminants. ETS is a complex mix of over 4,000 compounds. This mix contains many known or suspected human carcinogens and other toxic agents. More of these toxic compounds are found in SS than in MS. Workplace exposure to ETS can result in significant smoke intake, and passive smoke exposure may be related to impair respiratory function and an increase risk of lung cancer in nonsmokers. For nonsmokers sharing a work environment with cigarette smokers, the workplace must be considered hazardous independently of any specific industrial toxic exposure. The risk is particularly important when a high percentage of the workers smoke or where smokers and nonsmokers work in poorly ventilated areas. Nicotine is converted in the body to cotinine; cotinine therefore can be used as an indirect measure of a person's recent exposure to tobacco smoke. Levels of nicotine in hair and levels of cotinine in body fluids (saliva and urine) have been shown to increase with increasing environmental nicotine levels and with self-reported ETS exposure. The measurement of nicotine or cotinine in hair may be more appropriate for longer-term exposure to tobacco. The purpose of this study is to comparing airborne nicotine levels and hair cotinine level in restaurant workers. Concentration of airborne nicotine and hair nicotine (and cotinine) is closely related to exposed frequency of sidestream smoke in the workplace. Nicotine in hair is a better predictor of airborne nicotine than hair cotinine. Hair nicotine can be a useful tool to assess ETS exposure interventions. It may have limiting levels of ETS exposure by placing regulatory restrictions on smoking in workplaces and in public spaces.