• 제목/요약/키워드: Particles in Plasma

검색결과 458건 처리시간 0.027초

Spray-ICP technique에 의한 $SnO_2$미분말 합성 및 박막 제조 (Synthesis of ultrafine particles and thin films of $SnO_2$ by the spray-ICP technique)

  • 김정환;박종현;김영도;신건철
    • 한국결정성장학회지
    • /
    • 제8권3호
    • /
    • pp.487-492
    • /
    • 1998
  • ICP(Inductively Coupled Plasma)를 열원으로 출발용액의 농도변화 및 $TiO_2$ 첨가로 $SnO_2$$(Sn,Ti)O_2$미분말을 합성하였으며 SnO2 박막을 제조하였다. 각각 합성된 $SnO_2$ 미분말은 모두 tetragonal의 rutile형으로서 입자들의 평균입경은 30nm로 매우 미세하였으며, 좁은 입도분포를 나타내었다. $TiO_2$를 첨가하였을 경우 $SnO_2-TiO_2$ 미분말은 고용체를 이루었으며, 첨가량이 증가함에 따라 결정성은 감소하였다. ICP tail flame으로 fused quartz 기판을 가열하여 (101)면을 주 peak로 하는 $SnO_2$ 박막을 얻었다.

  • PDF

AE파형분류에 의한 용사코팅재의 파손해석 (Fracture Analysis of Plasma Spray Coating by Classification of AE Signals)

  • 김귀식;박경석;홍용의
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.24-30
    • /
    • 2002
  • The deformation and fracture behaviors of both Al2O3 and Ni 4.5wt.%Al plasma thermal spray coating were investigated by an acoustic emission method. Plasma thermal spray coating is formed by a process in which melted particles flying with high speed towards substrate, then crash and spread on the substrate surface cooled and solidified in a very short time, stacking of the particles makes coating. A tensile test is conducted on notch specimens in a stress range below the elastic limit of substrate. A bendind test is done on smooth specimens. The waveforms of AE generated from the both test coating specimens can be classified by FFT analysis into two types which low frequency(type I) and high frequency(type II). The type I waveform is considered to corresponds exfoliation of coating layers and type II waveform corresponds the plastic deformation of notch tip. The fracture of the coating layers can estimate by AE event and amplitude, because AE features increase when the deformation generates.

  • PDF

Physical properties of TiN thin films deposited by grid-assisted magnetron sputtering

  • Jung, Min J.;Nam, Kyung-H.;Han, Jeon-G.;Shaginyan, Leonid-R.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2002년도 춘계학술발표회 초록집
    • /
    • pp.46-46
    • /
    • 2002
  • It is well known that thin film growth and surface morphology can be substantially modified by ion-bombardment during the deposition. This is particularly important in case of thin-film deposition at low temperatures where the film growth occurs under highly nonequilibrium conditions. An attractive way to promote crystalline growth and surface morphology is deposition of additional energy in to the surface of the growing film by bombardment with hyperthermal particles. We were deposited crystalline Ti and TiN thin films on Si substrate by magnetron sputtering method with grid. Its thin films were highly smoothed and dense as increasing grid bias. In order explore the benefits of a bombardment of the growing film with high energetic particles. Ti and TiN films were deposited on Si substrates by an unbalanced magnetron sputter source with attached grid assembly for energetic ion extraction. Also, we have studied the variation of the plasma states by Langmuir probe and Optical Emission Spectroscopy (OES). The epitaxial orientation. microstructual characteristics. electrical and surface properties of the films were analyzed by XRD. SEM. Four point probe and AFM.

  • PDF

Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성 (Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process)

  • 권의표;이종권
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

플렉서블 플라즈마 패치에서 발생되는 활성종이 다당류 표면에 미치는 영향 (Effect of Active Species Generated from Flexible Plasma Patch on Polysaccharide Surface)

  • 이유리;이승훈;김도근
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.133-137
    • /
    • 2018
  • Plasma devices such as jets, pencils, and torches have been developed as new tools that help penetration of target agents and applied to plasma medicine. However, these devices cannot be used in a large area. Therefore, we introduced a flexible plasma device, which can be treated of large area and designed as bendable plasma. In additional, in vitro model based on agarose gel was prepared that can be show effectiveness in the depth of penetration. Plasma treatment conditions such as power, time and distance can be optimized on the agarose gel wound model. The chemical structure of changed polysaccharides was predicted due to reactive excited atoms and molecules, UV photons, charged particles and reactive oxygen and nitrogen species (RONS).

Biocompatible Dispersion Methods for Carbon Black

  • Kim, Hwa;Park, Kwangsik;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • 제28권4호
    • /
    • pp.209-216
    • /
    • 2012
  • The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer's solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were $85.0{\pm}42.9$ and $112.4{\pm}67.9$ nm, respectively, in plasma; the corresponding sizes in culture media were $84.8{\pm}38.4$ and $164.1{\pm}77.8$ nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm ($73.6{\pm}28.8$ and $80.1{\pm}30.0$ nm for N330 and $349.5{\pm}161.8$ and $399.8{\pm}181.1$ nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects.

Zn$_2SiO_4$ : Mn Phosphor Particles Prepared by Spray Pyrolysis Process

  • Kang, Yun-Chan;Park, Hee-Dong;Lim, Mi-Ae
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.57-62
    • /
    • 2001
  • Green-emitting $Zn_2SiO_4$:Mn phosphor particles having a spherical shape and high luminescence intensities under VUV were prepared by spray pyrolysis process under severe preparation conditions. The type of precursor solutions affected the morphology and luminescence characteristics of the prepared particles. The particles prepared from the clear solution by laboratory-scale process had spherical shape and dense morphology, while the particles prepared from the severe preparation conditions had rough surface and collapsed structure. However, the particles prepared from the colloidal solution utilizing fumed silica were spherical in shape and filled morphology at the severe preparation conditions of high flow rate of carrier gas, high concentration of solution, and large reactor size. The prepared $Zn_2SiO_4$:Mn phosphor particles with complete spherical shape had higher photoluminescence intensity than that of the commercial product prepared by solid state reaction.

  • PDF

저온 플라즈마 공정에서의 나노 미립자 생성 및 성장 (Nanoparticle generation and growth in low temperature plasma process)

  • 김동주;김교선
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.95-109
    • /
    • 2009
  • A low temperature plasma process has been widely used for semiconductor fabrication and can also be applied for the preparation of solar cell, MEMS or NEMS, but they are notorious in the point of particle contamination. The nano-sized particles can be generated in the low temperature plasma process and they can induce several serious defects on the performance and quality of microelectronic devices and also on the cost of final products. For the preparation of high quality thin films of high efficiency by the low temperature plasma process, it is desirable to increase the deposition rate of thin films with reducing the particle contamination in the plasmas. In this paper, we introduced the studies on the generation and growth of nanoparticles in the low temperature plasmas and tried to introduce the recent interesting studies on nanoparticle generation in the plasma reactors.

  • PDF

아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선 (The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment)

  • 이승호;소명기
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF

Surface Characterization and Morphology in Ar-Plasma-Treated Polypropylene Blend

  • Weon, Jong-Il;Choi, Kil-Yeong
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.886-893
    • /
    • 2009
  • Surface modifications using a radio frequency Ar-plasma treatment were performed on a polypropylene (PP) blend used for automotive bumper fascia. The surface characterization and morphology were examined. With increasing aging time, there was an increase in wettability, oxygen containing polar functional groups (i.e., C-O, C=O and O-C=O) due to oxidation, the amount of tale, and bearing depth and roughness on the PP surface, while there was a decrease in the number of hydrocarbon groups (i.e., C-C and C-H). AFM indicated that the Ar-plasma-treatment on a PP blend surface transforms the wholly annular surface into a locally dimpled surface, leading to an improvement in wettability. SEM showed that the PP layer observed in the non-plasma-treated sample was removed after the Ar-plasma treatment and the rubber particles were exposed to the surface. The observed surface characterization and morphologies are responsible for the improved wettability and interfacial adhesion between the PP blend substrate and bumper coating layers.