• Title/Summary/Keyword: Particle volume fraction

Search Result 222, Processing Time 0.027 seconds

A Comparative Study Between Light Extinction and Direct Sampling Methods for Measuring Volume Fractions of Twin-Hole Sprays Using Tomographic Reconstruction

  • Lee, Choong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1986-1993
    • /
    • 2003
  • The spatially resolved spray volume fractions from both line-of-sight data of direct measuring cells and a laser diffraction particle analyzer (LDPA) are tomographically reconstructed by the Convolution Fourier transformation, respectively. Asymmetric sprays generated from a twin-hole injector are tested with 12 equiangular projections of measurements. For each projection angle, a line-of-sight integrated injection rate was measured using a direct sampling method and also a liquid volume fraction from a set of line-of-sight Fraunhofer diffraction measurements was measured using a light extinction method. Interpolated data between the projection angles effectively increase the number of projections, significantly enhancing the signal-to-noise level in the reconstructed data. The reconstructed volume fractions from the direct sampling cells were used as reference data for evaluating the accuracy of the volume fractions from the LDPA.

Analysis of the Fine Particulate Matter Particle Size Fraction Emitted from Facilities Using Solid Refuse Fuel (고형연료제품 사용시설에서 배출되는 미세먼지 입경분율 분석)

  • You, Han-Jo;Jung, Yeon-Hoon;Kim, Jin-guil;Shin, Hyung-Soon;Lim, Yoon-Jung;Lee, Sang-Soo;Son, Hae-Jun;Lim, Sam-Hwa;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.719-725
    • /
    • 2020
  • Objectives: With the growth of national interest in fine particulate matter, many complaints about pollutants emitted from air pollution emitting facilities have arisen in recent years. In particular, it is thought that a large volume of particulate pollutants are discharged from workplaces that use Solid Refuse Fuel (SRF). Therefore, particulate contaminants generated from SRF were measured and analyzed in this study in terms of respective particle sizes. Methods: In this study, particulate matter in exhaust gas was measured by applying US EPA method 201a using a cyclone. This method measures Filterable Particulate Matter (FPM), and does not consider the Condensable Particulate Matter (CPM) that forms particles in the atmosphere after being discharged as a gas in the exhaust gas. Results: The mass concentration of Total Suspended Particles (TSP) in the four SRF-using facilities was 1.16 to 11.21 mg/Sm3, indicating a very large concentration deviation of about 10 times. When the fuel input method was the continuous injection type, particulate matter larger than 10 ㎛ diameter showed the highest particle size fraction, followed by particulate matter smaller than 10 ㎛ and larger than 2.5 ㎛, and particulate matter of 2.5 ㎛ or less. Contrary to the continuous injection type, the batch injection type had the smallest particle size fraction of particulate matter larger than 10 ㎛. The overall particulate matter decreased as the operating load factor decreased from 100% to 60% at the batch input type D plant. In addition, as incomplete combustion significantly decreased, the particle size fraction also changed significantly. Both TSP and heavy metals (six items) satisfied the emissions standards. The measured value of the emission factor was 38-99% smaller than the existing emissions factor. Conclusions: In the batch injection facility, the particulate matter decreased as the operating load factor decreased, as did the particle size fraction of the particulate matter. These results will help the selection of effective methods such as reducing the operating load factor instead of adjusting the operating time during emergency reduction measures.

Microstructure and Strength Characteristic of 9Cr Ferritic Heat-resistant Steel Applied to the Power Plants (발전플렌트용 9Cr 페라이트 내열강의 미세조직과 강도특성)

  • Kang, C.Y.;Lee, J.M.;Lee, G.H.;Lee, M.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • This present study were investigated effect of Ni contents on the microstructure and strength characteristic in 9Cr ferritic heat-resistant steel added 1.7%W in place of Mo in order to restrain laves phase formation. The result obtained from this study are as follow. Volume fraction, number of particles per unite area and particle size of carbide decreased with increase of Ni contents. Other side, carbides of $M_{23}C_6$ type was mainly precipitated in this steel, but laves phases could not precipitated in spite of increasing of aging time. With increase of tempering temperature, hardness was increased, and maximum value was showed around 873k by secondary hardening due to precipitation of $W_2C$ type carbide and then, was decreased. Tensile and yield strength due to decrease precipitation amount of carbide and number of particles per unite area was decreased, but elongation and impact value was increased. In case of aged specimen after tempering than tempered specimen, strength was higher and elongation was lower due to increasing of precipitated amount of carbide and number of particles per unite area.

  • PDF

Evaluation of hydraulic dead-zone and particle removal efficiency in the base frame of a constructed wetland using computational fluid dynamics (인공습지 기본형상에서 전산유체역학을 이용한 사류구간 및 입자제거율 평가)

  • Choi, Young-Gyun;Park, Min-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.495-502
    • /
    • 2013
  • Hydraulic dead-zone and particle removal efficiency in the base frame of a constructed wetland was evaluated with computational fluid dynamics (CFD). The fraction of hydraulic dead-zone was estimated to be 1.2-2.1 % (v/v) and it was attributed to the artificial islands developed in the constructed wetland. Solids deposition rate could be increased with higher hydraulic retention time (HRT, ranged from 2.2 to 4.2 hr) of the wetland and larger particle size (ranged from 10 to $50{\mu}m$) in the influent. Experimental results showed that the volume concentration of the particles smaller than $10{\mu}m$ in diameter was varied from $1.99{\times}10^3{\mu}m^3/ml$ (HRT 12.8 hr) to $3.92{\times}10^3{\mu}m^3/ml$(HRT 2.2 hr) in the influent of the constructed wetland. With the effluent volume concentration data, removal efficiency of those particles was calculated to be 71.2 and 24.7 % when the HRT was 12.8 and 2.2 hr, respectively. Similar trend with the HRT variation could be identified with CFD analysis.

Reheating Process of Particulates Reinforced Metal Matrix Composites for Thixoforming (Thixoforming을 위한 입자강화형 금속복합재료의 Reheating 공정)

  • 이동건;안성수;강충길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • A both mixing process of electro-magnetic stirring and mechanical process technique were used to fabricate particulate metal matrix composites(PMMCs) for variation of particle size. The PMMCs were tested for their tensile test for with and without heat treatment with T6. PMMCs fabrication processing conditions for both electrical and mechanical process are also suggested. In order to thixoforming of PMMCs, fabricated billet are reheated by using the optimal coil designed as a function of length between PMMC billet and coil surface, coil diameter and billet length. The effect of reinforcement distribution on billet temperature variation are investigated with calculated solid fraction theory proposed as a function of matrix alloy and volume fraction of reinforcement.

  • PDF

Fabrication of Particulates Reinforced Metal Matrix Composites by Electro-Magnetic Stirring and Reheating Process for Thixoforming (전자기식 교반법을 이용한 입자강화형 금속복합재료의 제조 및 Thixoforming을 위한 재가열 공정)

  • 임해정;강충길;조형호
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.494-503
    • /
    • 2000
  • The electro-magnetic stirring and mechanical process were applied to fabricate particulate metal matrix composites(PMMCs) with various particle size. The mechanical test on PMMCs was carried out in order to clarify the effect of 76 heat treatment on tensile behaviors. In order to study the thixoforming of PMMCs, fabricated billet are reheated by using the coil designed as a function of length between PMMC billet and coil surface, coil diameter and billet length. The effect of reinforcement distribution on billet temperature variation has been investigated with the calculated solid fraction theory based on a function of matrix alloy and volume fraction of reinforcement.

  • PDF

The Theoretical and Experimental Value on the Stress-Strain Behavior of Dual Phase Steels (복합조직강의 응력-변형 거동에 관한 이론치와 실험치)

  • 오택열;김석환;유용석
    • Journal of Surface Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.63-70
    • /
    • 1993
  • The mechanical properties of ferrite-martensited dual phases steels are affected by the microstructural factors, such as martensited volume fractions, ferrite grain size, strength ratio, connectivity, etc. Two phase alloys are technologically important. However, there is a lack of understanding as to stress-strain behavior of dual phase alloy in terms of stress-strain behavior of each component phases. The lack of the understanding stems from the complex deformation behavior of two phase alloys. The aim of this study is to rationalize stress-strain behavior of dual phase alloy in terms of the stress-strain behavior of component phase by systematically considering all the factors listed above. It was found that for a given martensite volume fraction, the calculated stress-strain curve was higher for a finer particles size than for a coarse particle sized within the range of the strains considered, and this behavior was seen for all the different volume fraction alloys considered. The calculated stress-strain curves were compared with corresponding experimental curves, and in general, good agreement was found. The maximum difference in flow stress between the calculated and the experimental results occurs at the nearly beginning of the plastic deformation.

  • PDF

Development of an Analysis Program for Pedestrian Flow based on the Discrete Element Method (이산요소법을 이용한 보행류 해석 프로그램 개발)

  • Nam, Seong-Won;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3197-3202
    • /
    • 2007
  • An analysis program for pedestrian flow has been developed to investigate the flow patterns of passenger in railway stations. Analysis algorithms for pedestrian flow based on DEM(Discrete Element Method) are newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.

  • PDF

Characterization of Individual Atmospheric Particles, Collected in Susan, Korea, Using Low-Z Electron Probe X-ray Microanalysis (Low-Z Electron Probe X-ray Microanalysis 분석법을 이용한 해안인근 지역의 대기입자 분석)

  • 김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2003
  • A single particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA) was applied to characterize atmospheric particles collected in Busan, Korea, over a daytime period in Dec. 2001. The ability to quantitatively analyze the low-Z elements, such as C, N, and 0, in microscopic volume enables the low-Z EPMA to specify the chemical composition of individual atmospheric particle. Various types of atmospheric particles such as organics, carbon-rich, aluminosilicates, silicon oxide, calcium carbonate, iron oxide, sodium chloride, sodium nitrate, ammonium sulfate, and titanium oxide were identified. In the sample collected in Busan, sodium nitrate particles produced as a result of the reaction between sea salt and nitrogen oxides in the atmosphere were most abundantly encountered both in the coarse and fine fractions. On the contrary, original sea salt particles were rarely observed. The fact that most of the carbonaceous particles were distributed in the fine fraction implies that their origin is anthropogenic.

Analysis of Pedestrian Flow Characteristics in Subway Station (지하역사 기본 모델에 대한 여객 유동 특성 해석)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.271-276
    • /
    • 2006
  • Insight into behaviour of pedestrians as welt as tools to assess passenger flow condition is important in such instances as planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM (Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.