• Title/Summary/Keyword: Particle volume fraction

Search Result 222, Processing Time 0.028 seconds

Effects of micromechanical models on the dynamics of functionally graded nanoplate

  • Tao Hai;A. Yvaz;Mujahid Ali;Stanislav Strashnov;Mohamed Hechmi El Ouni;Mohammad Alkhedher;Arameh Eyvazian
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • The present research investigates how micromechanical models affect the behavior of Functionally Graded (FG) plates under different boundary conditions. The study employs diverse micromechanical models to assess the effective material properties of a two-phase particle composite featuring a volume fraction of particles that continuously varies throughout the thickness of the plate. Specifically, the research examines the vibrational response of the plate on a Winkler-Pasternak elastic foundation, considering different boundary conditions. To achieve this, the governing differential equations and boundary conditions are derived using Hamilton's principle, which is based on a four-variable shear deformation refined plate theory. Additionally, the Galerkin method is utilized to compute the plate's natural frequencies. The study explores how the plate's natural frequencies are influenced by various micromechanical models, such as Voigt, Reuss, Hashin-Shtrikman bounds, and Tamura, as well as factors such as boundary conditions, elastic foundation parameters, length-to-thickness ratio, and aspect ratio. The research results can provide valuable insights for future analyses of FG plates with different boundaries, utilizing different micromechanical models.

The Extrusion Characteristics in Hor Extrusion of $SiC_p/6061 Al$ Composite ($SiC_p/6061 Al$ 복합재료의 압출가공에 있어서 압출특성)

  • Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.945-951
    • /
    • 1994
  • In order to elucidate the extrusion characteristics of $SiC_{p}$/6061 Al composite, defomation resistance, $K_{w}$ was determined using the empirical formula suggested by Watanabe et al, and also extrusion pressure was measured using the extrusion press with a capacity of 350 ton. The $K_{w}$ which are propotional to extrudability, was increased with increasing volume fraction of reinforcement, $SiC_{p}$, but decreased with increasing the particle size. The peaks of maximum extrusion pressure in curves of extrusion force vs ram stroke were changed sharply with decreasing the particle size. The elevated extrustion temperature resulted in the decreased $K_{w}$ and extrusion pressure, but caused the surface tearing of extrusion composite bars. The results showed that extrudability of the composite billets is depend on the extrusion conditions as well as the characteristics of reinforcement, $SiC_{p}$.

  • PDF

Preparation of Porous Carbon by Chlorination of SiC (SiC의 염소화에 의한 다공성 탄소 입자 제조)

  • Park, Hoey Kyung;Park, Kyun Young;Kang, Tae Won;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 2012
  • SiC particles, 8.3 ${\mu}m$ in volume average diameter, were chlorinated in an alumina tubular reactor, 2.4 cm in diameter and 32 cm in length, with reactor temperature varied from 100 to $1200^{\circ}C$. The flow rate of the gas admitted to the reactor was held constant at 300 cc/min, the mole fraction of chlorine in the gas at 0.1 and the reaction time at 4 h. The chlorination was negligibly small up to the temperature of $500^{\circ}C$. Thereafter, the degree of chlorination increased remarkably with increasing temperature until $900^{\circ}C$. As the temperature was increased further from 900 to $1200^{\circ}C$, the increments in chlorination degree were rather small. At $1200^{\circ}C$, the chlorination has nearly been completed. The surface area of the residual carbon varied with chlorination temperature in a manner similar to that with the variation of chlorination degree with temperature. The surface area at $1200^{\circ}C$ was 912 $m^{2}/g$. A simple model was developed to predict the conversion of a SiC under various conditions. A Langmuir-Hinshelwood type rate law with two rate constants was employed in the model. Assuming that the two rate constants, $k_{1}$ and $k_{2}$, can be expressed as $A_{1e}^{-E_{1}/RT}$ and $A_{2e}^{-E_{2}/RT}$, the four parameters, $A_{1}$, $E_{1}$, $A_{2}$, and $E_{2}$ were determined to be 32.0 m/min, 103,071 J/mol, 2.24 $m^{3}/mol$ and 39,526 J/mol, respectively, through regression to best fit experimental data.

Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process (브레이징용 Al 합금 분말의 미세조직에 미치는 Sn 함량의 영향)

  • Kim, Yong-Ho;Yoo, Hyo-Sang;Na, Sang-Su;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

Source Identification and Quantification of Coarse and Fine Particles by TTFA and PMF

  • Hwang, In-Jo;Bong, Choon-Keun;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.203-213
    • /
    • 2002
  • Receptor modeling is one of statistical methods to achieve reasonable air pollution strategies. In order to maintain and manage ambient air quality, it is necessary to identify sources and to apportion its sources for ambient particulate matters. The main purpose of the study was to survey seasonal trends of inorganic elements in the coarse and fine particles. Second, this study has attempted emission sources qualitatively by a receptor method, the PMF mo-del. After that. both PMF (positive matrix factorization) model and TTFA (target transformation factor analysis) model were applied to compare and to estimate mass contribution of coarse and fine particle sources at the receptor. A total of 138 sets of samples was collected from 1989 to 1996 by a low volume cascade impactor with 9 size fraction stages at Kyung Hee University in Korea. Sixteen chemical species (Si, Ca, Fe, K, Pb, Na, Zn, Mg, Ba, Ni, V, Mn, Cr, Br, Cu. Co) were characterized by XRF. The study result showed that the weighted arithmetic mean of coarse and fine particles were 51.3 and 54.4 $\mu\textrm{g}$/㎥, respectively. Contribution of both particle fractions were esti-mated using TTFA and PMF models. The number of estimated sources was seven according to TTFA model and 8 according to PMF model. Comparison of TTFA and PMF revealed that both methodologies exhibited similar trends in their contribution pattern. However, large differences between contributions were observed in some sour-ces. The results of this study may help to suggest control strategies in local countries where known source profiles do not exist.

Improvement of Wear Resistance of Aluminum by Metal-Ceramic Particle Composite Layer (알루미늄표면에 금속-세라믹입자 복합첨가에 의한 내마모성개선)

  • ;;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.96-104
    • /
    • 1997
  • The present study was aimed to correlate the microstructure and the hardness as well as the wear resistance of the metal-ceramic particulated composite layer on the pure Al plate. The composite layers were constructed by the addition of TiC particles on the surface of Al-Cu alloyed layers by PTA overlaying process. Initially, the Al-Cu alloyed layers were achieved by the deposition of Al-(25 ~ 48%) Cu alloys on the pure Al plate by TIG process. It was revealed that TiC particles were uniformly dispersed without any reaction with matrix in the composite layer. The volume fraction of TiC particles (TiC V F) increased from 12% to 55% with increasing the number of pass of composite layer. Hardnesses of (Al-48%Cu + TiC (3&4layers)) composite layer were Hv450 and Hv560, respectively, due to the increase of TiC V/F. Hardnesses of (Al-Cu + TiC) composite layers decreased gradually with insreasing temperature from 100$^{\circ}$C to 400$^{\circ}$C, and hardnesses at 400$^{\circ}$C were then reached to 1/5 - 1/10 of room temperature hardness depending on the construction of composite layers. The Specific wear of (Al + Tic) layer and Al-48%Cu alloyed layer decreased to 1/10 of the of pure Al, while the specific wear of (Al-48%Cu + TiC (4 layers)) composite layer exhibited 1/15 of that of steel such as SS400 and STS304.

  • PDF

Development and Verification of 4-Electrode Resistivity Probe (4전극 전기비저항 탐사장비의 개발 및 검증)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Jung, Soon-Hyuck;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.127-136
    • /
    • 2009
  • The objective of this study is the development and verification of the 4-electrode resistivity probe (4ERP) for the estimation of electrical properties of the saturated soils. The 4ERPs with wedge and plane types are manufactured to obtain the electrical resistivity without polarization at the electrodes by using Wenner array. The wedge type is for the penetration into the soil samples and the plane type is for the installation into the cells used for the laboratory tests. The consolidation tests are carried out by using 6 types of glass beads and 3 types of sands in size. The test results show that the electrical resistivity increases with a decrease in the porosity, and the constant m used in Archie's law is dependent on the particle shape rather particle size. The one dimensional liquefaction tests show that the porosity obtained by the 4ERP is similar to that determined by the volume fraction. The penetration of the 4ERP into the large scale calibration chamber produces the resistivity profiles. This study demonstrates that the 4ERP may effectively estimate the porosity of the saturated soils.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF