• Title/Summary/Keyword: Particle velocity

Search Result 1,623, Processing Time 0.037 seconds

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

The Fluctuation of Marine Aerosol Number Concentrations Related with Vertical Winds (연직풍에 따른 해양성 에어러솔 수 농도 변동에 관한 연구)

  • Park, Sung-Hwa;Jang, Sang-Min;Jung, Woon-Seon;Jeong, Jong-Hoon;Lee, Dong-In
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • To investigate the fluctuation of marine aerosol number concentration at each different size with vertical winds in ocean area, aerosol particles and vertical wind components were measured in the Ieodo Ocean Research Station, which is located to 419 km southwest of Marado, the southernmost island of Korea, from 8 to 22 June 2009. The Laser Particle Counter (LPC) and ultrasonic anemometer were used to measure the number of aerosol particles and vertical wind speed. Surface weather chart, NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large fluctuation of bigger particles more than 1.0 ${\mu}m$ in diameter by vertical wind speed during precipitation. The aerosol particles larger than 1.0 ${\mu}m$ in diameter increased as the wind changed from downward to upward during precipitation. The aerosol number concentration of bigger size than 1.0 ${\mu}m$ in diameter increased about 5 times when vertical velocity was about 0.4 $ms^{-1}$. In addition, the accumulation and coarse mode aerosol number concentration decreased about 45% and 92%, respectively compared to concentrations during precipitation period. It is considered that vertical wind plays an important role for the increasing of coarse mode aerosol number concentration compared to the large aerosol particles sufficiently removed by the scavenging effect of horizontal winds. Therefore, the upward vertical winds highly contribute to the formation and increase in aerosol number concentration below oceanic boundary layer.

Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds (삼상 역 유동층의 수력학, 열전달 및 물질전달 특성)

  • Kang, Yong;Lee, Kyung Il;Shin, Ik Sang;Son, Sung Mo;Kim, Sang Done;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.451-464
    • /
    • 2008
  • Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Correlation of Soil Particle Distribution and Hydrodynamic Dispersion Mechanism in Ununiformed Soils Through Laboratory Column Tests (실내주상실험에 의한 불균일한 토양의 입도와 수리분산기작의 상관성 연구)

  • Kang, Dong-Hwan;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.28-34
    • /
    • 2006
  • Laboratory column tests using $Cl^-$ tracer were conducted to study the correlation of soil particle distribution and hydrodynamic dispersion mechanism with three kinds of ununiformed soil samples, in which the ratio of gravel and sand versus silt and clay is 24.5 for S-1 soil, 4.48 for S-2 soil, and 0.4 for S-3 soil. Chloride breakthrough curves with time were fitted with gaussian functions. The relative concentrations of chloride were converged to 1.0 after 0.7 hours for S-1, 6.3 hours for S-2, and 389 hours for S-3. Average linear velocity, longitudinal dispersion coefficient, and longitudinal dispersivity were calculated by chloride breakthrough curves. Longitudinal dispersion coefficients were $1.20{\times}10^{-4}\;m^2/sec$ for S-1, $8.87{\times}10^{-7}\;m^2/sec$ for S-2, and $1.94{\times}10^{-9}\;m^2/sec$ for S-3. Peclet numbers calculated by the molecular diffusion coefficient of chloride and the mean grain diameters of soils were $2.59{\times}10^2$ for S-1, $6.27{\times}10^0$ for S-2, and $1.35{\times}10^{-4}$ for S-3. Mechanical dispersion was dominant for the hydrodynamic dispersion mechanism of S-1. Both mechanical dispersion and molecular diffusion were dominant for the hydrodynamic dispersion mechanism of S-2, but mechanical dispersion was ascendant over molecular diffusion. Hydrodynamic dispersion in S-3 was occurred mainly by molecular diffusion. When plotting three soils on the graph of $D_L/D_m$ versus Peclet number produced by Bijeljic and Blunt (2006), the values of $D_L/D_m$ for S-1 and S-2 were more than 2.0 order compared to their graph. S-3 was not plotted on their graph because the Peclet number was as small as $1.35{\times}10^{-4}$.

Effect of Reaction Factors on the Properties of Complex Oxide Powder Produced by Spray Roasting Process (분무배소법에 의해 생성되는 복합산화물 분말들의 특성에 미치는 반응인자들의 영향)

  • 유재근;이성수;박희범;안주삼;남용현;손진군
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.16-27
    • /
    • 2000
  • In order to produce raw material powder of advanced magnetic material by spray roasting process, newly modified spray roasting system was developed in this work. In this spray roasting system, raw material solution was effectively atomized and sprayed into the reaction furnace. Also, uniform temperature distribution inside reaction furnace made thermal decomposition process fully completed, and produced powder was effectively collected in cyclone and bag filter. This system equipped with apparatus which can purify hazard produced gas. In this study complex acid solution was prepared by dissolution of mill scale and ferro-Mn into the acid solution, and the pH of this complex acid solution was controlled about to 4. It was conformed that mill scale and ferro-Mn containing a lot of impurities such as $SiO_2$, P and Al could be used as raw material by reducing the impurities content of complex acid solution below 20 ppm. Complex oxide powder of Fe-Mn system was produced by spraying purified complex acid solution into the spray roaster through nozzle, and the variations of produced powder characters were studied by changing he reaction conditions such as reaction temperature, the injection velocity of solution and air, nozzle tip size and concentration of solution. The morphology of produced powder had spherical shape under the most experimental conditions, and concentration of solution. The morphology of produced powder has spherical shape under the most experimental conditions, and the composition and the particle size distribution were almost uniform, which tells the excellence of this spray roasting system. The grain size of most produced powder was below 100 nm. From the above results, it will be possible to produce ultra fine oxide powder from the chloride of Fe, Mn, Ni, Cu and rare earth by using this spray roasting system, and also to produce ultra fine pure metal powder by changing reaction atmosphere.

  • PDF

Dehydration of Solid Food Material Immersed in Fluidized-Bed (유동층(流動層)에 의한 고체식품(固體食品)의 건조(乾燥))

  • Yu, Ju-Hyun;Lee, Shin-Young;Pyun, Yu-Ryang;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.398-403
    • /
    • 1978
  • Squid was dried on the fluidized-bed in the drying chamber filled with solid particles which were also fluidized with hot-air, and effects of the fluidized particles, the squid's height from the grid and the drying temperature on the drying rate and quality of the squid were observed The mechanism of moisture transfer during the falling rate period was also derived. 1. Sodium chloride was found to be the most suitable fluidized particles and at an air velocity of 3.8 m/sec, optimal fluidization state of this particle was obtained. 2. Uniform profiles of temperature were obtained at a point 4 cm above the grid and the location of squid on the fluidized-bed observed to be suitable when it was 4 cm above the grid. 3. At an air velocity of 3.8 m/sec and when the location height of the squid on the fluidized-bed was 4 cm, the optimal temperature for the drying time which is required to reduce the moisture from 80.8% to 18-22% was 8.5 hours. 4. Drying data followed the empirical equation of unsteady state diffusion $log\;(\frac{W-We}{Wc-We})=-m{\theta}$ in the region of the moisture contents measured and the drying constant (m) was calculated as $0.32hr^{-1}$. These results suggested that the migration of moisture during the falling rate period is due to a diffusion type mechanism. 5. The short constant rate period was observed in the early stage and thereafter, drying was controlled by the falling rate period, and the time ratio of the fluidized bed drying to the through circulation drying for reducing the squid's moisture contents to the same level at the same drying temperature was 1 : 1.4 6. Comparisons of fluidized-bed dried squid and sun dried squid in sale showed that there was no significant change in qualities such as external appearance and hydrogen ion concentration of dry product.

  • PDF

Retrieving Volcanic Ash Information Using COMS Satellite (MI) and Landsat-8 (OLI, TIRS) Satellite Imagery: A Case Study of Sakurajima Volcano (천리안 위성영상(MI)과 Landsat-8 위성영상(OLI, TIRS)을 이용한 화산재 정보 산출: 사쿠라지마 화산의 사례연구)

  • Choi, Yoon-Ho;Lee, Won-Jin;Park, Sun-Cheon;Sun, Jongsun;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.587-598
    • /
    • 2017
  • Volcanic ash is a fine particle smaller than 2 mm in diameters. It falls after the volcanic eruption and causes various damages to transportation, manufacturing industry and respiration of living things. Therefore diffusion information of volcanic ash is highly significant for preventing the damages from it. It is advantageous to utilize satellites for observing the widely diffusing volcanic ash. In this study volcanic ash diffusion information about two eruptions of Mt. Sakurajima were calculated using the geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) and polar-orbiting satellite, Landsat-8 Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). The direction and velocity of volcanic ash diffusion were analyzed by extracting the volcanic ash pixels from COMS-MI images and the height was retrieved by adjusting the shadow method to Landsat-8 images. In comparison between the results of this study and those of Volcanic Ash Advisories center (VAAC), the volcanic ash tend to diffuse the same direction in both case. However, the diffusion velocity was about four times slower than VAAC information. Moreover, VAAC only provide an ash height while our study produced a variety of height information with respect to ash diffusion. The reason for different results is measured location. In case of VAAC, they produced approximate ash information around volcano crater to rapid response, while we conducted an analysis of the ash diffusion whole area using ash observed images. It is important to measure ash diffusion when large-scale eruption occurs around the Korean peninsula. In this study, it can be used to produce various ash information about the ash diffusion area using different characteristics satellite images.

Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds (다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회)

  • Hong, Yoon-Seok;Kang, Gyung-Soo;Park, Joo-Sik;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Hydrodynamic characteristics in multistage annular type fluidized bed (riser: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)were investigated. Glass beads ($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Geldart classification B) was used as a bed material. Accumulated weight by the electronic balance was measured to determine the solid flow rate in batch-type. In circulation condition, we measured the accumulated weight of particle transported from riser. At the steady state condition, solid circulation rate was calculated from time interval of the heated bed material passing between two thermocouples. Solid flow rate increased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 2.2 to 23.4 kg/s. However, mean residence time decreased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 1,438 to 440 s. The solid holdup in the riser was determined by measuring pressure differences according to the riser height. These results showed a similar trend to that of simple exponential decay type except for the top section of the riser. To verify the gas bypassing from top bubbling beds to middle bubbling beds, $CO_2$ gas was injected by tracer gas in constant ratio, and then was measured $CO_2$ concentration in outlet gas by gas chromatography. Gas bypassing occurred below 2.6% which is negligible value.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.