• Title/Summary/Keyword: Particle size measurement

Search Result 442, Processing Time 0.031 seconds

The effect of particle size on the determinability of maize composition in reflection mode.

  • MVaradi, Maria;Turza, Sandor
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1129-1129
    • /
    • 2001
  • Maize, in Hungary, is the fodder-plant grown in the biggest quantity. It is not only used as a fodder but other products such as iso-sugar are made from it, too. The quality of the fodder and the produce is largely dependent on the composition of the supplied maize to the processing site. The examination of quality parameters besides conventional methods are investigated and measured by NIR spectroscopy on a routine basis. The investigated parameters are the following: water, total protein, starch and oil content. The accuracy and precision of determining these parameters we, apart from the wet chemical methods, influenced by sample preparation to a great extent. One of the main features of this is the sample particle size and its distribution across the sample. The uneven distribution of particle size negatively influences the measurement accuracy, decreases model robustness and prediction ability. With these in mind the aim of our experiment was to investigate the effect of particle size on the accuracy of maize composition determination using reflection measurement setup. In addition, we tested different spectrum transformations, which are suitable for canceling this effect. In our experiment 47 samples were analyzed with three different mesh sizes (1.5mm, 1.8mm and 2mm). The results of our findings are presented here.

  • PDF

Evaluation of Methods for Determination of Bulk Density of Eight Kinds of Forage under Air-dry and Wet Conditions

  • Sekine, J.;Kamel, Hossam E.M.;El-Seed, Abdel Nasir M.A. Fadel;Hishinuma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1126-1130
    • /
    • 2003
  • The conditions of measurement for the determination of bulk density were evaluated to assess the bulkiness of 8 kinds of forage. The bulkiness of the forages was determined with 4 different sizes of forage samples with 7 different pressure application under air-dry and wet conditions. The dry bulk density (DBD) curvilinearly regressed with the pressure applied. The particle size of the samples and kinds of forage used in the present study did not affect changes in values of DBD determined under pressures over $20g/cm^2$ up to $200g/cm^2$. The values of the wet bulk density (WBD) increased as an increment of particle size, but were not always regressed on the particle size of the 8 kinds of forage. The DBD determined on 8 mm particles showed a higher correlation coefficient with neutral detergent fiber (NDF) contents. The DBD may be a useful tool for the assessment of NDF in forage, when it is determined under condition of a pressure of $100g/cm^2$ or over with a particle size of 8 mm. The WBD may not be utilized for the direct measurement of the physical characteristics of forage, but may be required a thorough consideration on water solubility of forages. Further studies are needed to clarify the DBD contribution to the prediction of forage intake by ruminants.

Measurement of Soil Organic Matter Using Near Infra-Red Reflectance (근적외선 반사도를 이용한 토양 유기물 함량 측정)

  • 조성인;배영민;양희성;최상현
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.475-480
    • /
    • 2001
  • Sensing soil organic matter is crucial for precision farming and environment friendly agriculture. Near infra-red(NIR) was utilized to measure the soil organic matter. Multivariate calibration methods, including stepwise multiple linear regression(MLR), principal components recession(PCR) and partial least squares regression(PLS), were applied to soil spectral reflectance data to predict the organic matter content. The effect of soil particle size and water content was studied. The range of soil organic matter contents was from 0.5 to 11%. Near infrared (NIR) region from 700 to 2,500nm was applied. For uniform soil particle size, result had good correlation (R$\^$2/ = 0.984, standard error of prediction= 0.596). The effect of soil particle size could be eliminated with 1st order derivative of the NIR signal. However. moist soil had a little lower correlation. R$\^$2/ was 0.95 and standard error of prediction was 0.94% using the PLS method. The results showed the possibility of soil organic matter measurement using NIR reflectance on the field.

  • PDF

Soot Primary Particle Size Measurement in a Ethylene Diffusion Flame Using Time-Resolved Laser-Induced Incandescence (2차원 시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 입자 크기 측정)

  • Shon, Moo-Kang;Moon, Gun-Feel;Kim, Gyu-Bo;Lee, Jong-Ho;Jeong, Dong-Soo;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1140-1145
    • /
    • 2004
  • Laser-induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles in flame environments. This technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application. The evaluation of the temporal decay of the laser-induced incandescence (LII) signal from soot particles is introduced as a technique to obtain two-dimensional distributions of particle sizes and is applied to a laminar diffusion flame. This novel approach to soot sizing exhibits several theoretical and technical advantages compared with the established combination of elastic scattering and LII, especially as it yields absolute sizes of primary particles without requiring calibration. With this technique a spatially resolved 2-D measurement of soot primary particle sizes is feasible in a combination process form the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size.

  • PDF

Automatic Extraction of Particle Streaks for 3D Flow Measurement

  • Kawasue, Kikuhito;Ohya, Yuichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.270-273
    • /
    • 1999
  • Circular dynamic stereo has special advantages as it enables a 3-D measurement using a single TV camera and also enables a high accurate measurement without a cumbersome calibration. Annular particle streaks are recorded using this system and the size of annular streaks directly concerns to the depth from TV camera. That is, the size of annular streaks is inversely proportional to the depth from the TV camera and the depth can be measured automatically by image processing technique. Overlapped streaks can be processed also by our method. The flow measurement in a water tank is one of the applications of our system. Tracer particles are introduced into the water in a flow measurement. Since the tracer particles flow with water, three-dimensional velocity distributions in the water tank can be obtained by measuring the all movement of tracer particles. Experimental results demonstrate the feasibility of our method.

  • PDF

A Study on Dispersion Copolymerization of Styrene/n-Butylmethacrylate and Alumina (스티렌/노말 부틸 메타크릴레이트와 알루미나의 분산 공중합에 관한 연구)

  • Bang, Hyun-Su;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.549-554
    • /
    • 2008
  • In order to synthesize polymer particle containing inorganic material, styrene and n-butylmethacrylate were copolymerized with alumina by dispersion polymerization. The weight ratio of styrene to n-butylmethacrylate was 3 : 1. A poly(N-vinyl pyrrolidon) was added as stabilizer. 2,2'-AzobisCisobutyronitrile) and 3-methacryloxypropyl trimethoxysilane were used as initiator and coupling agent, respectively. The weight ratio of 70 : 30 of isopropanol to distilled water was used as dispersion medium. According to the TEM measurement, we could confirm that alumina was dispersed into the polymer particle. The increase 'of concentration of alumina resulted in enhancement of particle size, but decreased its distribution. By the XRD method, it was found that the increase of alumina concentration showed the increase of intensity in peak and the increased 2$\theta$ value. From the TGA measurement, the increase of alumina concentration caused high heat resistance of the polymer. With respect to the type of initiator, the longer half life of initiator, the smaller particle size. We also found that the increase of particle stabilizer concentration made the decreased of particle size due to the accelerated generation of polymer particle in the early stage of reaction.

An Experimental Study on Particle Collection Efficiency of the Slit Impactor (슬릿 임팩터의 입자 포집 효율에 관한 연구)

  • 황창덕;허재영;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.689-696
    • /
    • 1989
  • In this experimental study, relative particle size distribution was measureed at the inlet and outlet of the slit impactor using the particle sizer. The imployed measuring method of the size distribution was different from the conventional method. This measurement system has the advantage of obtaining the particle collection efficiency for various particle size easily and at once compared with other methods. The effects of jet to plate distance and Reynolds number on the characteristic impactor efficiency curves have been studied. In the results of this experiment, the increment of collection efficiency was observed as Reynolds number increases in the case of S/W = 1/2 but was very slight. The influence of S/W is more remarkable than that of Reynolds number on the particle collection efficiency.

Particle Emission Characteristics and Measurement of Ultrafine Particles from Laser Printer (사무용기기에서 발생되는 미세입자 측정 및 분석방법 연구)

  • Lee, Kyung Hwan;Kim, Sun Man;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • As the indoor activity increases in recent years, the indoor air quality becomes more important. One of the major contaminants in office space is the copy machines and the laser based printers. These devices usually emit nano-particles and chemical species that may give some health effect. The amount of particles generated by the printers and copy machines depend on printer models, printing speed, toners, papers, humidity and so on. To evaluate the emission rate of nano-particles from Laser Printers, the mass concentration measurement method has been used (BAM, 2004). However, the mass concentration measurement method for nano-particles is tedious and time consuming. Therefore, for the development of a new nano-particle counting method, the nano-particle emission characteristics and size distributions are evaluated.

Effects of Particle Measuring Conditions on Diesel Nanoparticles Distribution (입자측정조건이 디젤 나노입자의 입경분포에 미치는 영향)

  • Lee, Jin-Wook;Kim, Hong-Suk;Jeong, Young-Il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.653-660
    • /
    • 2006
  • Due to the stronger exhaust emission regulations and the introduction of advanced technology in Diesel engine, the specific Diesel particulate matters have decreased by about one order of magnitude since the 1980's. In recent years, particle number emissions rather than particulate mass emissions have become the subject of controversial discussions. Recent results from health studies imply that it is possible that particulate mass does not properly correlated with the variety of health effects attributed to Diesel exhaust. Concern is instead now focusing on nano-sized particles. This study has been performed for the better understanding about the Diesel nano-particle measurement and size distribution characteristics in the exhaust system of a turbo charged Diesel engine. A scanning mobility particle sizer(SMPS) system was applied to measure the particle number and size concentration of Diesel exhaust particles. As the experimental results, the number concentrations in the particle size (Dp<200 nm) were very sensitive to dilution conditions. Specially the changes in nano-particle number concentrations(Dp<50 nm) increased along the downstream of exhaust flow. Also we found the dilution conditions were influencing the condensation of SOF and $H_2O$ during dilution and cooling of hot exhaust.

Determination of Background Gray-level for Accurate Measurement of Particles in using Image Processing Method (영상처리 기법을 이용한 입경 측정시 배경 명도가 측정 정밀도에 미치는 영향)

  • Koh, Kwang-Uoong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.599-607
    • /
    • 2000
  • In this study, experiments have been performed to examine the effects of background gray-level on the depth-of-field and on the in-focus criteria. The normalized value of contrast(VC) and the gradient indicator(GI) were used as the in-focus criteria for the small and the large size-ranges of particles, respectively. The slightly larger number of pixels were detected with the brighter background. The maximum of the normalized value of contrast(VCmax) is decreased with the brighter background and its deviation from that with the background gray-level of 160 turned out to be about $pm$15% when the background gray-level changes from 100 to 200. However, the maximum gradient indicator(GImax) changes with the background gray-level within only $pm$5%. The depth-of-field for the VC-applicable particle-size range is largely dependent on the background gray-level. On the other hand, the depth-of-field for the GI-applicable particle-size range changes only slightly with the background gray-level. To keep the normalized standard deviation of the particle size within 0.1, the background gray-level should be set 160$pm$20 for both the VC-applicable and GI-applicable ranges which cover the particle size between $10{\mu}m$ and $300{\mu}m$.