• Title/Summary/Keyword: Particle separation

Search Result 480, Processing Time 0.027 seconds

Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

  • He, Sai;Yang, Chang-qiao;Li, Su-qin;Zhang, Chang-quan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of $Fe_2O_3$ in concentrate could be increased from 39.6% to 55.0% and $V_2O_5$ from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

DEVELOPMENT AND TESTING OF MEDIUM CAPACITY GRAIN FLOUR SEPARATOR

  • Kachru, Rajinder-P
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.966-978
    • /
    • 1993
  • A power operated 90.5 hp electric motor) grain flour separator was designed and developed for separation of grain (wheat, corn, chickpea and soybean) flour into various fractions based on the size of the particles of the product. The separator agitating mechanism, feed control, cylindrical separator unit and an eccentric mechanism. The machine was tested for wheat ( variety ; Sujata) flour separation into four fractions, viz ; semolina, Gr-I and II, flour (coarse) and white (fine) flour. Wheat samples (6.8% m.c., db) were first pearled by CIAE pearler for 15.8% bran removal . The pearled wheat grains were then milled for semolina by a burre mill. The product and machine characteristics were determined at different capacities varying from 24 kg/h to 143 kg/h. It was found that 76 kg/h capacity gave reasonably best results in terms of purity and recovery of semolina vis-a-vis the market product. The energy requirement of the machine at no-load was found to be 230 W and at load c nditions, it varied between 36.3-6.4 KJ per kg of fead seperation. The macine could be used by small flour millers small/medium size traders and retailers and other processors for making available various flour products of different particle size in the market for ready use of the consumers.

  • PDF

Microstructure Analysis with Preparation Condition of Electrolyte Membrane for High Temperature Electrolysis (고온 수전해 전해질 막의 제막조건에 따른 미세구조 분석)

  • Choi, Ho-Sang;Son, Hyo-Seok;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2006
  • This study was carried out to analyze the microstructure characteristics of electrolyte membrane through XRD, SEM and AC impedance measurement for using in high temperature steam electrolysis(HTE). It was investigated that thermal stability and electric characteristics by sintering condition using dry and wet process, and confirmed growth of particle and density change by sintering temperature. The sintering temperature and behavior had an effect on the relative density of the ceramic and the average grain size. The more amount of dispersant in organic compound increase, the more the density increased. But the binder was shown opposite phenomenon. It was analyzed that electrolyte resistance and electrical characteristics using AC impedance. The electrical properties of YSZ grain boundary changed with the sintering temperature.

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF

Analysis of High Volume Slit Type Two-Stage Virtual Impactor for Particle Size Classification (특정크기 입자농축을 위한 대유량 슬릿형 2단 가상충돌기의 성능분석)

  • 박성호;김상수;오명도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.285-291
    • /
    • 1991
  • A two-stage slit type virtual impactor based on the concept of the single stage virtual impactor has been designed, fabricated, and evaluated for the purpose of concentrating the suspended particles in the air with the size range of 1.8-4.5 .mu.m and handling large flow volume. Monodisperse methylene blue particles have been generated with vibrating orifice aerosol generator (VOAG). The separation efficiency and concentration efficiency have been measured by the UV-visible absorption spectrometry. Previous study for a single stage virtual impactor were used to determine the design parameters such as 50% cut-off sizes and dimensions of the two stage virtual impactor. The separation efficiency curve and 50% cut-off Stokes number(cut-off sizes) are not sensitive to the nozzle Reynolds number, but sensitive to the ratio between the minor flow rate and the total flow rate, The measured concentration efficiency was compared with the maximum concentration efficiency determined by the separation efficiencies of the first and the second stages. The differences between the measured and the maximum concentration efficiencies result from the wall loss due to the deposited particles on the internal walls inside the impactor.

Effects of Operating Variables on Solid Separation Rate in Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템에서 고체분리속도에 미치는 조업변수들의 영향)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Bae, Dal-Hee;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.355-361
    • /
    • 2009
  • Effects of operating variables on solid separation rate in two-interconnected fluidized beds system for selective solid circulation have been investigated. Coarse(212~300 or $425{\sim}600{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 987 g/min. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, diameter of solid injection nozzle, particle size of coarse particles, aperture of the solid separator, and weight fraction of fines in the solid mixture increased. However, the effect of the fluidization velocity was negligible.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.

Analysis of Auxiliary Device in a Gas-solid Cyclone by Experimental and Computational Approaches

  • Lee, Ju-Yeol;Park, Duck-Shin;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.21-28
    • /
    • 2003
  • An auxiliary device, called Post Cyclone (PoC). had been introduced and primarily examined in earlier works which proved the reduction of the emission of fine dust from the gas-solid cyclones without incurring significant increase of cost and pressure drop. It has been known that the PoC has some advantages over other secondary dust treatment devices such as (a) simple design, (b) low cost of manufacture, (c) minimum additional pressure drop, (d) high recoverbility of the product dust, and (e) simplicity of operation. Despite the potential advantage, however, lack of practical data confined its plausible application in wide areas. Thus, in this work, a few serial experiments were conducted in terms of a few operation conditions, and the particle trajectories throughout the cyclone set-up were visually analyzed by using a commercial computer simulation program (FLUENT).

CLASSIFICATION SCHEMES AND PROPERTIES OF INFRARED GALAXIES

  • Rybka, P.;Pollo, A.;Takeuchi, T.T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.293-294
    • /
    • 2012
  • We established a separation scheme to distinguish galaxies from stars with the aid of AKARI/FIS color-color (CC) diagrams. In all the combinations of CC diagrams we can distinguish two separate clouds. It was shown that in all cases one of them contains more than 95% of galaxies and the other one, in most cases, consists in more than 80% of stars (Pollo et al., 2010). Currently we are looking into more detailed classifications. We are especially interested in separating different morphological types of galaxies, mainly within spiral galaxies. Moreover, we study the properties of infrared galaxies.

Development of Ceramic Composite Membranes for Gas Separation: IV. Permeation Characteristics of ${\gamma}$-Alumina Membranes (기체분리용 세라믹 복합분리막의 개발 : IV. ${\gamma}$-알루미나 분리막의 투과 특성)

  • 현상훈;강범석;최두진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.970-980
    • /
    • 1992
  • ${\gamma}-alumina$ membranes were prepared by sol-gel dip coating or pressurized coating of boehmite sols on slipcasted ${\gamma}-alumina$ support tubes. The particle size of sols synthesized via the modified Yoldas-method could be controlled below 5 mn according to the mole ratio of nitric acid/aluminumtri-sec-butoxide (0.07~1.0). The reproducible crack-free composite membranes were produced by the 2nd dip coating or the pressurized coating technique using very stable sols with the particle size of 45 nm. Nitrogen gas permeability through the top-layer in the composite membrane was about $70~55{\times}10^{-7}\;mol/m^2{\cdot}s{\cdot}Pa$. The thermal stability of the top layer was proved to be good enough upto the heat-treatment temperature of $500^{\circ}C$.

  • PDF