• Title/Summary/Keyword: Particle removal characteristics

Search Result 216, Processing Time 0.027 seconds

Particle collection performance of a separated two-stage electrostatic precipitator for subway air purification (지하철 공기질 개선을 위한 분리형 2단 전기집진기의 집진 특성 분석)

  • Kim, Ye-Sle;Lee, Yeawan;Kim, Yong-Jin;Han, Bangwoo;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.119-130
    • /
    • 2020
  • In this study, we developed a separated two-stage electrostatic precipitator applicable in a subway air conditioning system. We studied the characteristics of collection efficiency of 0.3 ㎛ particle and ozone generation at different charger sizes and gaps of collector plates. Also, we compared the performance of the two-stage ESP to the MERV 10 filter with the removal efficiency of 10% used in actual subway air conditioning system. The maximum collection efficiency of 0.3 ㎛ particle was 93% at A charger (600 mm×250 mm×600 mm) and 84% at B charger (330 mm×280 mm×330 mm). Especially, with voltages applied to chargers with collection efficiency of about 80% or more, the ozone concentration of two different chargers was 5 ppb to 35 ppb. Finally, the filter quality of the collector developed in this study was 400 times higher than that of the MERV 10 filter. Therefore, it was concluded that the two-stage ESP could be a promising PM removal device suitable for subway air conditioning system.

Reaction of Natural Manganese Dioxide with Hydrogen Sulfide at High-Temperature (고온에서 천연산 망간광석과 황화수소의 반응특성)

  • Shon, Byung-Hyun;Oh, Kwang-Joong;Kim, Young-Sick
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Sulfur emission control in coal gasification plants implies the removal of $H_2S$ from the fuel gas in the gas clean-up system. In this study, the effects of particle size of sorbents, temperature of sulfidation and sorbent characteristics on the $H_2S$ removal efficiency of manganese ore were investigated. Experimental results showed that the removal efficiency of $H_2S$ was optimum when the temperature was about $700^{\circ}C$. And that the smaller particle size, the higher the $H_2S$ removal efficiency, but that was not effective very much. As the temperature increases, the reactivity of sorbents has lowered because agglomeration of sorbents increased the intraparticle transport resistance. This phenomenon was confirmed by SEM photographs. The equilibrium ratio ($P_{H_2O}/P_{H_2S}$) obtained by experiments is represented as a ${\log}(P_{H_2O}/P_{H_2S})=5653/T-3.7909$. It was showed that the natural manganese ore could be used as a sorbent because its capacity for $H_2S$ removal is equivalent to the eariler developed sorbents.

  • PDF

Operational Characteristics of a Dry Electrostatic Precipitator for Removal of Particles from Oxy Fuel Combustion (순산소 연소 배출 입자 제거용 건식 전기집진장치 운전 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Oh, Won-Seok;Hwang, Gyu-Dong;Kim, Yong-Jin;Hong, Jeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • In a test duct with closed configuration, particle removal performance of an edge-plate type electrostatic precipitator (ESP) was evaluated at a high flow rate in $CO_2$ rich environments by changing gap distances between collection plates, concentrations of $CO_2$, particle sizes, types of electrodes, and types of power supplies. At the same experimental conditions, collection efficiency of particles with the mean particle size, 300 nm, decreased as the gap distance and $CO_2$ concentration increased because of low electrostatic force and low discharged current. In addition, as the particle size increased, the efficiency increased because of high charging rate of the large particles. With the electrode type which has higher surface area of a discharging plate and with the power supply which applied 25 kHz-pulsed DC voltages, the removal efficiency was high even in rich $CO_2$ condition due to high electrostatic force at the same power consumption.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Numerical Analysis on Flow Characteristics in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters (백필터를 활용한 흡착/촉매 통합공정 시스템의 반응기 내 유동특성 및 체류시간에 대한 수치해석적 연구)

  • Choi, Choeng-Ryul;Koo, Yoon-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.203-213
    • /
    • 2007
  • Numerical analysis has been performed to understand flow characteristics in the reactor with bag filters in an integrated adsorption/catalytic process which can treat dioxin and $NO_{x}$ together. Computational fluid dynamics technique was employed with Euler-Lagrangian model to consider flue gas and activated carbon particles simultaneously, so that residence time of flue gas and activated carbon particle could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle's size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas and activated carbon particles, and distribution of activated carbon have been obtained from the numerical analysis. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan (부산 도심지에서 측정된 에어로졸 농도의 물리적 특성)

  • Kim, Yun-Jong;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.

Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag

  • Noh, Jin H.;Lee, Sang-Hyup;Choi, Jae-Woo;Maeng, Sung Kyu
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2018
  • A sidestream contains the filtrate or concentrate from the belt filter press, filter backwash and supernatant from sludge digesters. The sidestream flow, which heads back into the sewage treatment train, is about 1-3% less than the influent flow. However, the sidestream can increase the nutrient load since it contains high concentrations of phosphorus and nitrogen. In this study, the removal of PO4-P with organic matter characteristics and bacteriological changes during the sidestream treatment via ladle furnace (LF) slag was investigated. The sidestream used in this study consisted of 11-14% PO4-P and 3.2-3.6% soluble chemical oxygen demand in influent loading rates. LF slag, which had a relatively high $Ca^{2+}$ release compared to other slags, was used to remove $PO_4-P$ from the sidestream. The phosphate removal rates increased as the slag particle size decreased 19.1% (2.0-4.0 mm, 25.2% (1.0-2.0 mm) and 79.9% (0.5-1.0 mm). The removal rates of dissolved organic carbon, soluble chemical oxygen demand, color and aromatic organic matter ($UV_{254}$) were 17.6, 41.7, 90.2 and 77.3%, respectively. Fluorescence excitation-emission matrices and liquid chromatography-organic carbon detection demonstrated that the sidestream treatment via LF slag was effective in the removal of biopolymers. However, the removal of dissolved organic matter was not significant during the treatment. The intact bacterial biomass decreased from $1.64{\times}10^8cells/mL$ to $1.05{\times}10^8cells/mL$. The use of LF slag was effective for the removal of phosphate and the removal efficiency of phosphate was greater than 80% for up to 100 bed volumes.

Performance Prediction of a Grease Filter for Kitchen Ventilation (주방환기용 그리스 필터의 성능예측)

  • Kim Ki-Jung;Bae Gwi-Nam;Kim Youngil;Hur Nahmkeon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.313-316
    • /
    • 2002
  • A grease filter is used to remove grease generated from a cooking appliance in a kitchen. This numerical study has been conducted to investigate the particle collection characteristics of a grease filter having nominal flowrate of $100m^{3}/h$. The flow field and particle trajectories in the grease filter with a flow chamber were simulated by using the commercial code of STAR-CD. The pressure drop of a grease filter rapidly increases with increasing the air flowrate. The numerical values of the pressure drop are slightly lower than the experimental values when the air flowrates are 50, 75, and $100m^{3}/h$. The particle collection efficiency of a grease filter increases with increasing the particle diameter and the air flowrate, which means that the inertial impaction is a dominant particle removal mechanism in a grease filter The cut-off diameter of the tested grease filter representing $50-{\%}$ collection efficiency is about $11.6{\mu}m$ for water droplets at $100m^{3}/h$.

  • PDF

Removal of Heavy Metals Through Conventional Water Treatment Processes (정수처리 과정에서의 중금속제거에 관한 연구)

  • 김중구;고영송;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.36-44
    • /
    • 1994
  • A study was carried out in order to investigate the removal efficiencies and removal characteristics of heaw metals such as Pb, Cd, Cr, Cu in raw water by one of conventional water treatment processes. The coagulants used in this study were Alum and PAC. Three kinds of water samples were provided: kaolin water, kaolin water mixed with humic acid and raw water from Han River mixed with suspended matter deposited on raw water inlet pipe. Heaw metals were added to the water samples with their respective turbidity, and jar tests were performed. In the results from heaw metal removal studies, lead might be adsorbed or exchanged on the particle surface (SS) rather than react with organic matter added. Cadmium was affected on the dissolved organic matter. Chromium was affected by the both dissolved organic matter and SS concentration, and the restabilization and the enmeshment appeared at moderate (50~80 NTU) and high (100 NTU) turbidity as defined in this experimenL The removal efficiency of copper was relatively little affected by the dissolved organic matter but by SS concentration in comparison with other heavy metals. In these studies as to the raw water turbidities and concentration of heaw metals, it is proved out that the removal efficiency on heaw metals in both cases of PAC and Alum as coagulants was not significantly different.

  • PDF

A Study on Treatment of CSOs by Vortex Separator and Continuous Fiber-Filter System (Vortex separator와 연속식 섬유사여과를 이용한 CSOs 처리연구)

  • Lee, Bum-Joon;Na, Ji-Hoon;Kim, Jin-Sung;Joo, Jae-Young;Bae, Yoon-Sun;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.443-451
    • /
    • 2010
  • This study was conducted to confirm the CSOs characteristics, and to estimate treatment efficiency of CSO treatment process. Flowrate was average $53,500m^3$/d, maximum $58,100m^3$/d during dry season, but after rain-fall, the flowrate was increased more than twice that of the dry season. And, water pollution concentrations, such as $COD_{Cr}$, SS, $BOD_5$, TN and TP of after rain-fall, were also increased. Thus, for more efficient treatment of pollutants during rainy season, The vortex separator and continuous fiber filter devices were used. From the results on particle range, removal efficiency of particle was 99.7% at the particle size range of $40{\sim}100{\mu}m$ but decreased as 55-80% at the below $40{\mu}m$. The removal efficiencies of $COD_{Cr}$, SS, TN and TP were approx. 70, 60, 70 and 50, respectively during the dry season and approx. 50, 50, 8 and 18% during the rainy season. Also, when compared with the primary sediment basin, $COD_{Cr}$, SS, TN and TP removal efficiencies were high. especially, at the case of TN and TP, TN was more removed than TP because of higher conversion factor value. But we needed more study for the injection of a coagulants to get more stable treatment efficiency for soluble pollutants. Consequently, This process can be used for CSOs treatment as well as replace the primary sedimentation basin during the dry season.