• Title/Summary/Keyword: Particle exposure

Search Result 221, Processing Time 0.022 seconds

A Case of Metal Fume Fever Associated with Copper Fume in a Welder (용접공에서 발생한 구리흄에 의한 금속열 1례)

  • Lim, Hyun-Sul;Cheong, Hae-Kwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.3 s.62
    • /
    • pp.414-423
    • /
    • 1998
  • Metal fume fever has been known as an occupational disease is induced by intense inhalation of fresh metal fume with a particle size smaller than $0.5{\mu}m\;to\;1{\mu}m$. The fumes originate from heating metals beyond their boiling point, as happens, for example, in welding operations. Oxidation usually accompanies this process. In most cases, this syndrome is due to exposure to zinc oxide fumes; however, other metals like copper, magnesium, cadmium, manganese, and antimony are also reported to produce such reactions. Authors report a case of metal fume fever suspected to be associated with copper fume inhalation. The patient was a 42-year-old male and was a smoker. He conducted inert gas tungsten arc welding on copper-coated materials without safety precautions such as a protective mask and adequate ventilation. Immediately after work, he felt metallic taste in his mouth. A few hours after welding, he developed headache, chilling sensation, and chest discomfort. He also complained of myalgia, arthralgia, feverish sensation, thirst, and general weakness. Symptoms worsened after repeated copper welding on the next day and subsided gradually following two weeks. Laboratory examination showed a transient increase of neutrophil count, eosinophilia, elevated erythrocyte sedimentation rate, and positive C-reactive proteinemia. Blood and urine copper level was also increased compared to his wife. Before this episode, he experienced above complaints several times after welding with copper materials but welding of other metals did not produce any symptoms. It was suggested that copper fume would have induced metal fume fever in this case. Further investigations are needed to clarify their pathogenic mechanisms.

  • PDF

Electrical Properties of Supercapacitor Based on Dispersion Controlled Graphene Oxide According to the Change of Solution State by Washing Process (Washing을 통한 상분리 변화에 따른 그래핀 산화물의 분산도 조절 및 슈퍼커패시터의 특성에 관한 연구)

  • Sul, Ji-Hwan;You, In-kyu;Kang, Seok Hun;Kim, Bit-Na;Kim, In Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2018
  • Recently, there has been an increasing interest in the use of graphene as electrode materials for supercapacitors. In this regard, graphene oxide (GO) films were prepared using GO slurry obtained by dispersing GO powder in deionized (DI) water. The degree of dispersion of GO powder in DI water depends on the concentration of GO slurry, pH, impurity content, GO particle size, types of functional groups contained in GO, and manufacturing method of GO powder. In this study, the dispersivity of the GO powder was improved by adjusting the pH using only DI water (without additives), and a uniform GO film was obtained. The GO film was reduced by exposure to xenon intense pulsed light for a few milliseconds, and the reduced GO film was used as electrodes of a supercapacitor. The supercapacitor was characterized using cyclic voltammetry (CV), charge-discharge cycle, and electrochemical impedance spectroscopy measurements, and the specific capacitance of the supercapacitor was found to be ~140 F/g from the CV data.

Dust Concentration Monitoring in Korean Native Cattle Farm according to Sampling Location and TMR Process (한우사 내부 위치 및 TMR 배합 작업에 따른 분진 모니터링)

  • Park, Gwanyong;Kwon, Kyeong-Seok;Lee, In-bok;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Kim, Jun-Gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.75-83
    • /
    • 2017
  • Many parts of problems in livestock industry today are associated with organic dust. Endotoxin and toxic gasses on the surface of dust and dust itself can cause aesthetic displeasure and respiratory disease. It also reduces livestock productivity by suppressing immunity of animals and carrying microbes causing animal disease. However, dust level of cattle farm was rarely reported in Korea, and regulation for cattle farm worker does not exist. In this paper, dust concentration and environmental condition were regularly monitored in a commercial Korean native cattle farm. The measurement was conducted according to location and working activities. From the measurement, distribution of dust concentration was affected by wind environment, as the result of natural ventilation. TMR mixer was a major source of dust in target cattle house. The maximum inhalable dust concentration was 637.8 times higher than exposure limit as feed dropped into the TMR mixer. It was expected that dust generation could be affected by particle size and drop height of feed. This study suggests potential risk of dust in cattle farm, and necessity for latter study. Effect of aerodynamic condition and TMR processing should be investigated for dust reduction study.

Study on swelling of starch granules using gravitational field-flow fractionation (GrFFF) (중력 장-흐름 분획법을 이용한 전분 입자의 swelling에 관한 연구)

  • Kim, Sun-Tae;Seo, So-Yeon;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.249-255
    • /
    • 2011
  • Swelling of starch granules by water-sorption causes a progressive or sometimes abrupt change in sorption behavior as a result of structural alterations and the possible exposure of new sites with high affinity for water. It is thus of interest to examine the time-dependent change in the size or shape of the starch granules. Gravitational field-flow fractionation (GrFFF) utilizes the earth's gravity as the external field, and is useful for separation of micron-sized particles with larger particles eluting earlier than smaller ones. In this study, GrFFF was used to monitor the swelling of two starch granules, potato starch and sweet potato starch during contact time of 11-12 days at room temperature in water. Results from GrFFF were compared with those obtained from optical microscope (OM). For both starch granules, the mean sizes were increased with time spent in water.

Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles

  • Barghi, Leila;Asgari, Davoud;Barar, Jaleh;Nakhlband, Aylar;Valizadeh, Hadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10281-10287
    • /
    • 2015
  • Background: Development of a nanosized polymeric delivery system for erlotinib was the main objective of this research. Materials and Methods: Poly caprolactone-polyethylene glycol-polycaprolactone (PCEC) copolymers with different compositions were synthesized via ring opening polymerization. Formation of triblock copolymers was confirmed by HNMR as well as FT-IR. Erlotinib loaded nanoparticles were prepared by means of synthesized copolymers with solvent displacement method. Results: Physicochemical properties of obtained polymeric nanoparticles were dependent on composition of used copolymers. Size of particles was decreased with decreasing the PCL/PEG molar ratio in used copolymers. Encapsulation efficiency of prepared formulations was declined by decreasing their particle size. Drug release behavior from the prepared nanoparticles exhibited a sustained pattern without a burst release. From the release profiles, it can be found that erlotinib release rate from polymeric nanoparticles is decreased by increase of CL/PEG molar ratio of prepared block copolymers. Based on MTT assay results, cell growth inhibition of erlotinib has a dose and time dependent pattern. After 72 hours of exposure, the 50% inhibitory concentration (IC50) of erlotinib hydrochloride was appeared to be $14.8{\mu}M$. Conclusions: From the obtained results, it can be concluded that the prepared PCEC nanoparticles in this study might have the potential to be considered as delivery system for erlotinib.

An Experimental Study on the Spray Characteristics by Twin-Fluid Atomizer for Wide Band Spray (광폭면 분무를 위한 2유체 노즐의 분무 특성에 관한 연구)

  • Lee, Joong-Soon
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.212-219
    • /
    • 2008
  • To develop the twin-fluid atomizer having the excellent performance of painting, the spray characteristics of how a wide area can be painted efficiently by one time spraying were studied in this paper. Spray phenomena are affected by the many factors determining the spray field such as the spraying pressure of gas, the spraying pressure and viscosity of liquid paints, the opening duration of needle valve, the design dimension of nozzle, and so on. As the results of experiments, these factors affecting on spray characteristics were suggested as followings; 1) The optimum spraying pressure of gas was $0.015{\sim}0.02\;kPa$, and the appropriate spraying pressure of liquid paint was 0.01kPa, In these situations, the setting up pressures must be compensated as much as the losing amount of pressure because a decompression occurred when operating valves. 2) The duration of opening the needle valve must be sustained for $1{\sim}2$ seconds to inject gas after spraying the liquid paint. This operating of the needle valve was necessary to avoid the affect on the changing of liquid column length, and to prevent the droplet deposit at the initial time of spraying. 3) The spray tip penetration was gained form the experimental equation, and the effective spraying angle was $85^{\circ}{\pm}5^{\circ}$ just at he appropriate spraying pressure of gas. The distribution of the area sprayed had the variation in $350{\pm}50\;mm$ because of the spraying pressure of gas, the its distance from the spray tip, and the lift of the needle valve.

  • PDF

A Review on Diesel Engine Exhaust and Lung Cancer Risks (디젤엔진 배출물질과 폐암발생 위험에 관한 고찰)

  • Bae, Hyun-Joo;Park, Jeong-Im
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.4
    • /
    • pp.277-290
    • /
    • 2012
  • Objectives: Diesel engine exhaust (DE) accounts for a significant percentage of air pollutants that are associated with various health outcomes including mortality, asthma, chronic bronchitis, respiratory tract infection, etc. In June, 2012, the International Agency for Research on Cancer (IARC) released the assessment results that classified DE as "carcinogenic to humans" (Group 1). This review is therefore focused on the lung cancer risks of DE. Methods: Literatures were searched using PubMed with key words of "diesel exhaust", "lung cancer", and other related terms for the period between 1990 and 2012. A total of 295 articles were searched and sixteen epidemiologic studies were identified as potentially relevant. Results: Sixteen epidemiologic studies about the lung cancer risks of workers exposed to DE in various occupations were summarized in two tables, 1) retrospective cohort studies and 2) case-control studies. Increased lung cancer risk, although not always smoking adjusted, was observed in 6 out of 8 retrospective cohort studies and 4 of 8 case-control studies. Conclusions: Diesel fuel is widely used in Korea. Exposure to DE is confirmed to be a human carcinogen by IARC. Noncancer health risks of DE also need careful attention as DE is a major source of fine-particle pollution. Along with the efforts for reducing the DE emission through improvements of diesel engines and fuel, and the use of alternative fuels, comprehensive health risk assessment of DE should be conducted to minimize the adverse health effects.

Radon Blocking Effect of Mask used in Everyday Life (일상생활에서 사용하는 마스크의 라돈 차단 효과)

  • Cheon, Se-Hyeon;Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.313-318
    • /
    • 2020
  • Since radon is an inert gas and is a monoatomic molecule, the size of one particle represents the size of an atom, which means that it has a radius of approximately 1 to 100 nm. Therefore, if the mask has a radius smaller than the size of general fine dust and ultra fine dust, but it is possible to block the inhalation of radon more than a certain amount, it is considered that the exposure through the inhalation of radon can be reduced through normal indoor wear. Accordingly, we would like to find out the radon blocking effect of a mask worn in everyday life. Looking at the reduction rate of radon for each mask, cotton masks decreased by 33.45%, medical masks by 33.50%, KF 80 masks by 35.12%, and KF 94 masks by 37.72%. It was found that the radon blocking effect of the cotton and medical masks was somewhat inferior to that of the KF mask, but the difference was not so great that the introduction of radon into the air could be blocked to a certain level by wearing a mask.

Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

  • Saputra, Devina;Yoon, Jin-Ha;Park, Hyunju;Heo, Yongju;Yang, Hyoseon;Lee, Eun Ji;Lee, Sangjin;Song, Chang-Woo;Lee, Kyuhong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-${\gamma}$ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be $12.5{\mu}g/m^3$) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions.

A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver (나노 은을 이용한 전자파 차폐 직물이 뇌파에 미치는 영향)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.6
    • /
    • pp.810-814
    • /
    • 2004
  • This study is one of the fundamental researches for the development of future smart clothing and textile products using silver(Ag) nano powder. Our study was focused on the blocking or insulating effects of nano-processed textiles from electromagnetic waves. Also, for the surveying of the actual effect to human body, we measure the variation of electroencephalogram which is an indication of human physical symptoms. Among various textiles in this experiment, nano silver processed case has shown the best blocking performance from the electromagnetic waves, which decreases depending on the distance. As a reference model of working environment, we setup the visual stimuli object on the computer that is a source of electromagnetic wave. The power spectrum distribution and the incidence of electroencephalogram was measured. The analysed data has shown that, with nano-processed textiles, ${\beta}$ wave does not appear very often where ${\beta}$ wave appears only to illustrate the stable states of human's body. However, as for the materials without nano processing, the ratio of ${\gamma}$ waves in the total level of electroencephalogram becomes higher in spite of short exposure to visual stimuli in work environment, which shows that the worker becomes stressed. The ${\beta}$ wave electroencephalogram of all materials is drawn in calcarine fissure of occipital lobe to show the convergent distribution, and stronger with block-processed Nano Silver Silk(NSS). The study based on the potential risks of human diseases such as physical fatigue by electromagnetic waves, and has shown that the application of Nano Silver textile for human uses require a proper particle size of it which would not penetrate cellular tissues, and a proper binder and binding treatment for it. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.