• Title/Summary/Keyword: Particle exposure

Search Result 221, Processing Time 0.024 seconds

A Study on the Photographic Characteristics Related to the Morphology of Phosphor Layers in the $CaWO_4$ and $Gd_2O_2S$ : Tb Screen ($CaWO_4$$Gd_2O_2S$ : Tb 증감지의 형광체 형태와 사진감도 특성에 관한 연구)

  • Lee, In-Ja;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.16 no.1
    • /
    • pp.41-55
    • /
    • 1993
  • Recently, various screen film system have been introduced in diagnostic radiology. There are two kinds of screen film system : blue emitting $CaWO_4$ screen has been largely used in these days. However, it tends to be changed to use green emitting $Gd_2O_2S$ : Tb screen. In this study, photographic characteristics of $CaWO_4$ and $Gd_2O_2S$ : Tb screen were investigated with luminescence, spectroscopy. The morphology of $CaWO_4$ and $Gd_2O_2S$ : Tb were also observed by using scanning electron microscope. The result obtained were as follows : 1. There was small difference in the thickness of phosphor layers for the front and back screen of blue emitting system, but little difference in those of green emitting system. 2. There was no difference in the size of phosphor particles between the front and back screen for each screen. However, the particle size was different for the various kinds of screens. 3. The shape of phosphor particle was round with many faces for all the screens. 4. In the exposure of X-ray with the same intensity, luminescent intensity of a green emitting system was $6{\sim}7$ times larger than that of a blue emitting system. 5. The thickness of phosphor layers does not affect on the sensitivity of the screens exposed by X-ray.

  • PDF

A study on the airborne concentration of welding fume for some manufacturing industries (일부 업종의 용접흄 분석 및 폭로농도에 관한 연구)

  • Byeon, Sang-Hoon;Park, Seung-Hyun;Kim, Chang-Il;Park, In-Jeong;Yang, Jeong-Sun;Oh, Se-Min;Moon, Young-Hahn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.172-183
    • /
    • 1995
  • The airborne concentrations of the welding fumes produced during $CO_2$ arcwelding process at shipbuilding, shiprepairing, container manufacturing and car accessary manufacturing industry were investigated. The effects how much reduced the welding fume were checked when the portable fan was used. The results were as follows; 1.The geometric mean of welding fume concentration in shipbuilding factory was $10.05mg/m^3$. This exposure concentration was higher than other 3 manufacturing industries at 95% confidence level. 2. The sampling filters for welding fume could be digested with acid within 1 hour by microwave oven. The recoveries for investigated metal elements were all over 95%. 3. The optimal wavelength could be selected for the simultaneous analysis of 8 metal elements by ICP(Inductively Coupled Plasma). 4. Noxious gases($O_1,NO_2$) produced during $CO_1$ gas arc welding process were detected that the concentration of ozone($O_1$) was less than 0.01 ppm and that of nitrogen dioxide($NO_2$) was 0.01-0.03 ppm. 5. The geometric mean of welding fume particle diameter was $1.26{\mu}m$ and geometric standard deviation was 1.51 for the counts when particle an analyzer(ELZONE) had been used. 6. When the portable fan had been used,the reduced percent of total welding fume for workers was about 47.8% when portable fan was applied to blow and 71.7% when to exhaust.

  • PDF

Plasma etching behavior of RE-Si-Al-O glass (RE: Y, La, Gd)

  • Lee, Jeong-Gi;Hwang, Seong-Jin;Lee, Seong-Min;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.49.1-49.1
    • /
    • 2010
  • The particle generation during the plasma enhanced process is highly considered as serious problem in the semiconductor manufacturing industry. The material for the plasma processing chamber requires the plasma etching characteristics which are homogeneously etched surface and low plasma etching depth for preventing particulate contamination and high durability. We found that the materials without grain boundaries can prevent the particle generation. Therefore, the amorphous material with the low plasma etching rate may be the best candidate for the plasma processing chamber instead of the polycrystalline materials such as yttria and alumina. Three glasses based on $SiO_2$ and $Al_2O_3$ were prepared with various rare-earth elements (Gd, Y and La) which are same content in the glass. The glasses were plasma etched in the same condition and their plasma etching rate was compared including reference materials such as Si-wafer, quartz, yttria and alumina. The mechanical and thermal properties of the glasses were highly related with cationic field strength (CFS) of the rare-earth elements. We assumed that the plasma etching resistance may highly contributed by the thermal properties of the fluorine byproducts generated during the plasma exposure and it is expected that the Gd containing glass may have the highest plasma etching resistance due to the highest sublimation temperature of $GdF_3$ among three rare-earth elements (Gd, Y and La). However, it is found that the plasma etching results is highly related with the mechanical property of the glasses which indicates the cationic field strength. From the result, we conclude that the glass structure should be analyzed and the plasma etching test should be conducted with different condition in the future to understand the plasma etching behavior of the glasses perfectly.

  • PDF

Toxicity of Two Different Sized Lanthanum Oxides in Cultured Cells and Sprague-Dawley Rats

  • Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • In recent years, the use of both nano- and micro-sized lanthanum has been increasing in the production of optical glasses, batteries, alloys, etc. However, a hazard assessment has not been performed to determine the degree of toxicity of lanthanum. Therefore, the purpose of this study was to identify the toxicity of both nano- and micro-sized lanthanum oxide in cultured cells and rats. After identifying the size and the morphology of lanthanum oxides, the toxicity of two different sized lanthanum oxides was compared in cultured RAW264.7 cells and A549 cells. The toxicity of the lanthanum oxides was also analyzed using rats. The half maximal inhibitory concentrations of micro-$La_2O_3$ in the RAW264.7 cells, with and without sonication, were 17.3 and 12.7 times higher than those of nano-$La_2O_3$, respectively. Similar to the RAW264.7 cells, the toxicity of nano-$La_2O_3$ was stronger than that of micro-$La_2O_3$ in the A549 cells. We found that nano-$La_2O_3$ was absorbed in the lungs more and was eliminated more slowly than micro-$La_2O_3$. At a dosage that did not affect the body weight, numbers of leukocytes, and concentrations of lactate dehydrogenase and albumin in the bronchoalveolar lavage (BAL) fluids, the weight of the lungs increased. Inflammatory effects on BAL decreased over time, but lung weight increased and the proteinosis of the lung became severe over time. The effects of particle size on the toxicity of lanthanum oxides in rats were less than in the cultured cells. In conclusion, smaller lanthanum oxides were more toxic in the cultured cells, and sonication decreased their size and increased their toxicity. The smaller-sized lanthanum was absorbed more into the lungs and caused more toxicity in the lungs. The histopathological symptoms caused by lanthanum oxide in the lungs did not go away and continued to worsen until 13 weeks after the initial exposure.

Characteristics of Particulate Matter Generated during the Operation of a Small Directly Fired Coffee Roaster (소형 직화식 커피 로스터 이용 시 발생하는 미세먼지 특성 연구)

  • Yu, Da Eun;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.236-248
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the concentrations of particulate matter generated during coffee roasting and to study various factors affecting the concentrations. Methods: Differences in concentration levels were investigated based on various factors to understand the emission rates of particulate matter over time and to compare the mass and number concentrations according to their size. Sampling was performed in closed laboratories without the operation of air conditioning or ventilation. Optical Particle Sizer(OPS) was used as a measuring device. An OPS measures using a light-scattering method. Sampling was performed for sixty minutes at one-minute intervals. The background concentration was measured for about 30 minutes before starting of coffee roasting. The concentrations of particulate matter generated during coffee roasting were monitored until roasted coffee beans were removed from the roaster and cooled down. Several factors affecting the concentrations of particulate matter were investigated, which includes the origins of green beans, the roasting level, and the input amount of green beans. Results: The results of this study may be summarized as follows: 1) There was no difference in particulate matter concentration levels by the origin of the green beans, but a statistically significant difference in concentration levels by roasting level and the input amount of green beans; The higher the roasting level, the higher was the particulate matter concentration. The more green beans we put in the roaster, the higher were the concentrations; 2) The PM10 mass concentrations increased over time. The average concentration after roasting was higher than the average concentration during roasting; 3) In the distribution of mass and number concentration by particle diameter, the majority of particles was below 2.5 ㎛. Conclusions: Persons who work in roastery cafes can be exposed to high concentrations of particulate matter. Therefore, personal exposure and risk assessment should be conducted for roastery cafe workers.

Environmental Characteristics of Waste Tire for Use as Soil Reinforcement (지반보강재로서 폐타이어 사용에 따른 환경영향 분석)

  • Cho, Jinwoo;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • This paper presents an experimental results on the environmental characteristics of waste tire. Experimental program includes a set of laboratory leaching tests and field pilot test for leachate analysis. Laboratory tests were conducted to illustrate how properties such as TOC, pH, turbidity and Zn change with tire sizes and drain conditions. In field pilot test, water samples were collected form a drainage system installed below the tire-reinforced retaining wall and analyzed for chemical quality. Laboratory leaching tests performed on various particle sizes of waste tire indicated that as tire size is increased, the concentration of leachate is decreased. In continuous flow column tests, the concentration of leachate decreased with the number of exposure periods or pore volumes flushed through the waste tire. However, during pause flow column tests, the concentration of leachates were increased with time. Field monitoring of effluent indicated that no significant adverse effects on ground water quality had occurred over a period of 12 months.

Comparative In Vitro Biological Toxicity of Four Kinds of Air Pollution Particles

  • Shin, Han-Jae;Cho, Hyun Gi;Park, Chang Kyun;Park, Ki Hong;Lim, Heung Bin
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.305-313
    • /
    • 2017
  • Accumulating epidemiological evidence indicates that exposure to fine air pollution particles (APPs) is associated with a variety of adverse health effects. However, the exact physiochemical properties and biological toxicities of fine APPs are still not well characterized. We collected four types of fine particle (FP) (diesel exhaust particles [DEPs], natural organic combustion [NOC] ash, synthetic organic combustion [SOC] ash, and yellow sand dust [YSD]) and investigated their physicochemical properties and in vitro biological toxicity. DEPs were almost entirely composed of ultrafine particles (UFPs), while the NOC, SOC, and YSD particles were a mixture of UFPs and FPs. The main elements in the DEPs, NOC ash, SOC ash, and YSD were black carbon, silicon, black carbon, and silicon, respectively. DEPs exhibited dose-dependent mutagenicity even at a low dose in Salmonella typhimurium TA 98 and 100 strains in an Ames test for genotoxicity. However, NOC, SOC, and YSD particles did not show any mutagenicity at high doses. The neutral red uptake assay to test cell viability revealed that DEPs showed dose-dependent potent cytotoxicity even at a low concentration. The toxicity of DEPs was relatively higher than that of NOC, SOC, and YSD particles. Therefore, these results indicate that among the four FPs, DEPs showed the highest in vitro biological toxicity. Additional comprehensive research studies such as chemical analysis and in vivo acute and chronic inhalation toxicity tests are necessary to determine and clarify the effects of this air contaminant on human health.

Assessing the Health Benefits of PM2.5 Reduction Using AirQ+ and BenMAP (AirQ+와 BenMAP을 이용한 초미세먼지 개선의 건강편익 산정)

  • Sun-Yeong Gan;Hyun-Joo Bae
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.1
    • /
    • pp.30-36
    • /
    • 2023
  • Background: Among various pollutants, fine particle (PM2.5, defined as particle less than 2.5 nm in aerodynamic diameter) shows the most consistent association with adverse health effects. There is scientific evidence documenting a variety of adverse health outcomes due to exposure to PM2.5. Objectives: This study aims to assess the health benefits of that would be achieved by meeting the World Health Organization's air quality guidelines for PM2.5 using AirQ+ and BenMAP. Methods: We estimated PM2.5 related health benefits in Korea from implementing the World Health Organization's air quality guidelines (annual average 5 ㎍/m3 and 10 ㎍/m3) and Korea's National Ambient Air Quality Standard (annual average 15 ㎍/m3). We used World Health Organization's AirQ+ and U.S. Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program. Results: The annual number of avoided PM2.5 related premature deaths exceeding WHO guideline levels was assessed using both AirQ+ and BenMAP. We estimated that the health benefits of attaining the World Health Organization's air quality guidelines for PM2.5 (annual average 5 ㎍/m3) would suggest an annual reduction of 26,128 (95% confidence interval [CI]: 17,363~34,024) and 26,853 (95% CI: 18,527~34,944) premature deaths. Conclusions: Our study provided useful information to policy makers and confirms that the reduction of PM2.5 concentration would result in significant health benefits in Korea.

Measurement of Airborne Particles and Volatile Organic Compounds Produced During the Heat Treatment Process in Manufacturing Welding Materials

  • Myoungho Lee;Sungyo Jung;Geonho Do;Yeram Yang;Jongsu Kim;Chungsik Yoon
    • Safety and Health at Work
    • /
    • v.14 no.2
    • /
    • pp.215-221
    • /
    • 2023
  • Background: There is little information about the airborne hazardous agents released during the heat treatment when manufacturing a welding material. This study aimed to evaluate the airborne hazardous agents generated at welding material manufacturing sites through area sampling. Methods: concentration of airborne particles was measured using a scanning mobility particle sizer and optical particle sizer. Total suspended particles (TSP) and respirable dust samples were collected on polyvinyl chloride filters and weighed to measure the mass concentrations. Volatile organic compounds and heavy metals were analyzed using a gas chromatography mass spectrometer and inductively coupled plasma mass spectrometer, respectively. Results: The average mass concentration of TSP was 683.1±677.4 ㎍/m3, with respirable dust accounting for 38.6% of the TSP. The average concentration of the airborne particles less than 10 ㎛ in diameter was 11.2-22.8×104 particles/cm3, and the average number of the particles with a diameter of 10-100 nm was approximately 78-86% of the total measured particles (<10 ㎛). In the case of volatile organic compounds, the heat treatment process concentration was significantly higher (p < 0.05) during combustion than during cooling. The airborne heavy metal concentrations differed depending on the materials used for heat treatment. The content of heavy metals in the airborne particles was approximately 32.6%. Conclusions: Nanoparticle exposure increased as the number of particles in the air around the heat treatment process increases, and the ratio of heavy metals in dust generated after the heat treatment process is high, which may adversely affect workers' health.

Evaluation of Internal Dosimetry according to Various Radionuclides Conditions in Nuclear Medicine Myocardial Scan: Monte Carlo Simulation (심근 핵의학 검사에서 다양한 방사성핵종 조건에 따른 내부피폭선량 평가: 몬테카를로 시뮬레이션)

  • Min-Gwan Lee;Chanrok Park
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.213-218
    • /
    • 2024
  • The myocardial nuclear medicine examination is widely performed to diagnose myocardium disease using various radionuclides. Although image quality according to radionuclides has improved, the radiation exposure for target organ as well as peripheral organs should be considered. Here, the aim of this study was to evaluate absorbed dose (Gy) for peripheral organs in myocardial nuclear medicine scan from myocardium according to various scan environments based on Monte Carlo simulation. The simulation environment was modeled 5 cases, which were considered by radionuclides, number of injections, and radiodosage. In addition, the each radionuclide simulation such as distribution fraction was considered by recommended standard protocol, and the mesh computational female phantom, which is provided by International Commission on Radiological Protection (ICRP) 145, was used using the particle and heavy ion transport code system (PHITS) version 3.33. Based on the results, the closer to the myocardium, the higher the absorbed dose values. In addition, application for dual injection for radionuclides leaded to high absorbed dose compared with single injection for radionuclide. Consequently, there is difference for absorbed dose according to radionuclides, number of injections, and radiodosage. To detect the accurate diseased area, acquisition for improved image quality is crucial process by injecting radionuclides, however, we need to consider absorbed dose both target and peripheral inner organs from radionuclides in terms radiation protection for patient.