• Title/Summary/Keyword: Particle diameter distribution

Search Result 354, Processing Time 0.026 seconds

Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace (튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석)

  • 배귀남;현정은;이태규;정종수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.

Vertical Change in Extinction and Atmospheric Particle Size in the Boundary Layers over Beijing: Balloon-borne Measurement

  • Chen, Bin;Shi, Guang-Yu;Yamada, Maromu;Zhang, Dai-Zhou;Hayashi, Masahiko;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.141-149
    • /
    • 2010
  • Aerosol size and number concentration were observed in the atmospheric boundary layer over Beijing (from near the ground to 1,200 m) on March 15 (a clear day) and 16 (a dusty day), 2005. The results were further compared with lidar measurements in order to understand the dependency of extinction on the particle size distribution and their vertical changes. The boundary layer atmosphere was composed of several sub-layers, and a dry air layer appeared between 400 and 1,000 m under the influence of dust event. In this dry air layer, the concentration of the fine-mode particles (diameter smaller than $1.0\;{\mu}m$) was slightly lower than the value on the clear day, while the concentration of coarse-mode particles (diameter larger than $1.0\;{\mu}m$) was remarkably higher than that on the clear day. This situation was attributed to the inflow of an air mass containing large amounts of Asian dust particles and a smaller amount of fine-mode particles. The results strongly suggest that the fine-mode particles affect light extinction even in the dusty atmosphere. However, quantitatively the relation between extinction and particle concentration is not satisfied under the dusty atmospheric conditions since laser beam attenuates in the atmosphere with high concentration of particles. Laser beam attenuation effect becomes larger in the relation between extinction and coarse particle content comparing the relation between extinction and fine particle content. To clarify this problem technically, future in situ measurements such as balloon-borne lidar are suggested. Here extinction was measured at 532 nm wavelength. Measurements of extinction at other wavelengths are desired in the future.

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

The Measurement of Oil Globule Size Distribution in the Soymilk Suspended with the Soybean Particle (대두입자가 분산된 두유에서 기름입자의 입도분포 측정)

  • Chung, J.B.;Yoon, S.K.;Sohn, H.S.
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.369-372
    • /
    • 1990
  • Although the measurement of oil globule size distribution is necessary to detect the process of demulsification, the reasonable methodology for its measurement has not been suggested because the solution of soymilk contains insoluble soybean particle and the protein to interfere with the detection of oil globule or oil content. The oil globule size distribution was measured by the homogeneous suspension and cumulative method under gravitational force or centrifugal force, which were modified with Stokes' low. The geometric mean diameter of oil globules in this soymilk was $033{\mu}m\;and\;031{\mu}m$ under gravitational method and centrifugal method, respectively. The differences of oil globule size distribution in the solutions emulsified by different pressures were detected by this method. The mean diameter of the solutions treated at higher pressure was shifted to smaller size and the distribution pattern of the solutions at higher pressure became more compact around the mean diameter.

  • PDF

Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan (부산 도심지에서 측정된 에어로졸 농도의 물리적 특성)

  • Kim, Yun-Jong;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.

A Study on the Soot Particle Measurement in Co-flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple (레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyung;Lee, Won-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1267-1273
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame have been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles were detected were detected by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by absorbing particles. A laser extinction method was used to measure the soot volume fraction and Laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

  • PDF

Numerical Investigation on Frictional Pressure Loss in a Perfect Square Micro Channel with Roughness and Particles

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1266-1274
    • /
    • 2006
  • A numerical study is performed to investigate the effect of inner surface roughness and micro-particles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to $1{\mu}m$) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a $100{\mu}m$ hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of $0.5{\mu}m$ diameter particles.

Flocculation Efficiency and Particle Distribution of Total Suspended Solids in the Effluent from Semi-recirculating Aquaculture Systems Treated with Polymers (고분자 응집제를 이용한 반순환여과양식시스템의 배출수 내 고형물 응집 효율 및 입도 분포)

  • Seo, Junhyuk;Woon, Sungchun;Kim, Jisoo;Park, Jeonghwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.10-16
    • /
    • 2022
  • Interest in effluent treatment is currently increasing and the use of polymetric coagulants is considered as a pretreatment of physical filtration prior to effluent discharge to increase solids recovery. A jar test evaluated effluent treatment efficiency of polymeric coagulants for semi-recirculating aquaculture systems. The particle coagulation efficiency and distribution were evaluated at different polymer dosages in freshwater and seawater effluents. The polymer was added at 0.005-0.08 mL/g of total suspended solids (TSS) in the effluents. TSS in the supernatant after coagulation decreased with increasing polymer dose in the freshwater, while showing no corresponding changes with dose in the seawater. However, in all treatments for both effluents, the removal efficiency was above 90%, regardless of the dose in the tested range. Both the De Brouckere Mean Diameter (DBMD) and volumetric median diameter (VMD) were all above 100 ㎛ in the freshwater effluent. In the seawater effluent, the particle size appeared to be larger than that in freshwater, ranging from 400-1,000 ㎛ for both DBMD and VMD. Considering that the typical pore size of physical filtration in aquaculture is between 60 and 200 ㎛, the use of polymers is expected to improve the practicality of physical filtration for efficient treatment.

Numerical Simulation on Flow and Heat Transfer in a Gas Atomizer (가스분무장치에서 열유동 특성에 관한 전산해석)

  • 이성연
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • Flow and heat transfer characteristics of gas, and trajectories and cooling characteristics of droplets/particles in a gas atomizer were investigated by a numerical simulation using FLUENT code. Among several kinds of solution method, the k-$\varepsilon$ turbulent model, power-law scheme, SIMPLE algorithm is adopted in this study. Momentum and heat exchange between a continuous phase(gas) and a dispersed phase(particle) were taken into account. Particle trajectories are simulated using the Lagrangian method, and Rosin-Rammler formula is used for the particle size distribution. Streamlines, velocities and pressures of gas, and trajectories, velocities and cooling rates of particles have been investigated for the various gas inlet conditions. Small but very intensive recirculation is found just below the melt orifice, and this recirculation seems to cause the liquid metal to spread radially. Particle trajectory depends on the particle size, the location of particle formation and the turbulent motion of gas. Small particle cools down rapidly, while large diameter particles solidify slowly, and this is mainly due to the differences in thermal inertia.

  • PDF

Size Distributions and Respirable Mass Fraction of Exposed Dust in Work Environment (일부 분진 작업장에서의 폭로분진의 입경분포와 호흡성 분진 비율)

  • 김영식
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 1992
  • Authors Investigated the particulate size distribution in work environment of Banwol and Changwon industry complex. Size distributions of particles exposured to workers in welding and in grounding process were evaluated by personal cascade impactors. Personal air samplers with personal cascade impactor were attached to the workers. The mass median diameter measured in welding sites were 0.3 to 3.BUm and in grinding sites were 1.5 to 2.6htn. Respirable matter fractions were ranged 32.67 to 65.055. Respirable matter fractions were calculated from the sixte distribution data by the respirable particle mass of the ACGIH criteria. The study relating to characteristics of particle of other industries and particulate sixte distribution is more needed in the near future

  • PDF