• 제목/요약/키워드: Particle charging

검색결과 91건 처리시간 0.028초

Comparative Study on Electrical Discharge and Operational Characteristics of Needle and Wire-Cylinder Corona Chargers

  • Intra, Panich;Tippayawong, Nakorn
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.520-527
    • /
    • 2006
  • The electrical discharge and operational characteristics of needle and wire-cylinder corona charger based on current measurements for positive and negative coronas were evaluated and compared. A semi-empirical method was used to determine the ion concentrations in the charging zone and at the outlet of both chargers. Results from experimental investigation revealed that magnitudes of the charging current from the wire-cylinder charger were approximately 3.5 and 2 times smaller than those from the needle charger for the positive and negative coronas, respectively. The ion number concentrations at the outlet for positive corona of both chargers were higher than fur negative corona at the same voltage. Flow and electric fields in the charging zone of both chargers were also analyzed via numerical computation. Strong electric field strength zone was identified and led to high charging and particle deposition. Effect of particle deposition on the evolution of discharge current was presented. It was shown that ions loss inside the wire-cylinder charger was higher than the needle charger The particle deposited on the corona electrodes and on the grounded cylinder caused a great reduction in charging efficiency of both chargers.

비구형 입자의 형상에 따른 단극 확산 하전 특성 (Effects of Particle Shapes on Unipolar Diffusion Charging of Non-Spherical Particles)

  • 오현철;박형호;김상수
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.501-509
    • /
    • 2004
  • Unipolar diffusion charging of non-spherical particles was investigated for various particle shapes. We researched with TiO$_2$agglomerates produced by the thermal decomposition of titanium tetraisopropoxide (TTIP) vapor. TTIP was converted into TiO$_2$, in the furnace reactor and was subsequently introduced into the sintering furnace. Increasing the temperature in the sintering furnace, aggregates were restructured into higher fractal dimensions. The aggregates were classified according to their mobility using a differential mobility analyzer. The projection area and the mass fractal dimension of particles were measured with an image processing technique performed by using transmission electron microscope (TEM) photograph. The selected aggregates were charged by the indirect photoelectric-charger and the average number of charges per particle was measured by an aerosol electrometer and a condensation particle counter. For the particles of same mobility diameter, our results showed that the particle charge quantity decreases as the sintering temperature increases. This result is understandable because particles with lower fractal dimension have larger capacitance and geometric surface area.

응축 증발법을 통한 서브마이크론 입자의 단극하전 특성 (Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method)

  • 최영주;김상수
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

Electrostatic Charging Measurement and PVC Separation of Triboeletrostatically Charged Plastic Particles using a Fluidized Bed Tribocharger

  • Shin, Jin-Hyouk;Lee, Jae-Keun
    • 한국분무공학회지
    • /
    • 제7권2호
    • /
    • pp.7-15
    • /
    • 2002
  • A particle flow visualization, electrostatic charging measurement and separation of triboelectrically charged particles in the external electric field by a fluidized bed tribocharger are conducted for the removal of PVC particles from mixed waste plastics. The laboratory-scale triboelectrostatic separation system consists of the fluidized bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PET particles can be imparted negative and positive surface charges respectively due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. To visualize these charged particles, He-Ne laser is used with cylindrical lenses to generate a sheet beam. In the charging measurement, the particle motion analysis system (PMAS), capable of determining particle velocity and diameter. is used to non-intrusively measure particle behavior in high strength electric field. The average charge-to-mass ratios of PVC and PET particles are $1.4\;and\;1.2{\mu}C/kg$, respectively. The highly concentrated PVC (91.9%) can be recovered with a yield of about 96.1% from the mixture of PVC and PET materials for a single-stage processing. The triboelectrostatic separation system using the fluidized tribocharger shows the potential to be an effective method for removing PVC from mixed plastics for waste plastic recycling.

  • PDF

Filtration Efficiency of Electrically Charged Air Filters by a Corona Method

  • Murtadlo, Zainul Alim Ali;Joe, Yun-Haeng;Park, Seok-Hoon;Park, Hyun-Seol
    • 한국입자에어로졸학회지
    • /
    • 제15권1호
    • /
    • pp.15-25
    • /
    • 2019
  • The influences of corona charging parameters on collection efficiency and surface potential of air filters were investigated. A polypropylene filter medium was electrically charged using a corona charger, and the resulting surface potential and filtration efficiency against neutralized KCl particles were measured. The filter media was charged under different conditions of applied voltage, voltage polarity, charging time, and distance between electrodes. In addition, we considered charging both sides of the filter as well as charging one side of the filter. As a result, electrical force obtained by charged fiber affected filtration efficiency when the apply voltage strength was higher than 7 kV. Negatively charged filter had higher filtration efficiency than positively charged filter while the surface potential of the negatively charged filter was slightly lower than those of positively charged filter. Moreover, the filtration efficiency increased as the charging time of filter fiber increased and the distance between electrodes decreased. The filtration efficiency was more sensitive to changes of charging time than to those of electrode distance, and the efficiency of both sides charged filter was higher than that of single side charged filter.

전기 수력학적 방법을 이용한 미세 입자의 하전 특성에 관한연구 (Study on the Fine Particle Charging Characteristics with the Electrohydrodynamic Atomization)

  • 안진홍;김광영;윤진욱;안강호
    • 설비공학논문집
    • /
    • 제13권4호
    • /
    • pp.289-294
    • /
    • 2001
  • A well defined electro-spraying and electro-static precipitator(ESP) experiment is carried out to investigate the charging characteristics of the submicron particles and the monodisperse particles. The basic idea is that the highly charged electro-sprayed droplets will be produced into the gas when the Coulombic repulsive force on the surface is higher than the surface tension of the spraying liquid. During this process many highly charged smaller droplets or ions, if the droplets are completely dried out, will be produced in the space. These charged species will be attached ion the particles and then eventually charge the particles. These charged particles will be easily collected with ESP. The experimental results show that the atomizer generated particles with geometric mean diameter (GMD) of 62nm are charged more than 90% even at the mean face velocity of 2.5m/s at the charging zone.

  • PDF

전기집진기의 10 nm 급 초미세 나노입자의 하전 및 집진 특성 (Characteristics of Charging and Collection of 10-nm-Class Ultrafine Nanoparticles in an Electrostatic Precipitator)

  • 한방우;김학준;김용진;송동근;홍원석;신완호
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1013-1018
    • /
    • 2011
  • 전기집진에서의 10 nm 급 초미세 나노입자의 하전 및 집진 특성을 파악하였고, 나노입자의 확산효과와 비교해 보았다. 나노입자의 하전율과 확산손실 효과의 지배력에 따라 전기집진기에서의 나노입자 집진효율이 결정되는 것을 확인할 수 있었다. 10nm 급 영역에서는 입자 크기가 작아질수록 지속적으로 집진효율이 감소하였다. 10 nm 이하의 영역에서는 나노입자의 부분적 하전효과가 전기집진기 내의 확산 손실 효과보다 지배적인 것을 알 수 있었다. 10 nm 이하의 나노입자에 대하여 집진효율 실험 결과가 단극 확산 하전 이론을 적용한 입자하전율 계산 결과와도 잘 일치하였다.

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

에어로솔 입자의 정밀입경분포 측정을 위한 물분자 클러스터 이온의 질량예측 (Mass Prediction of Various Water Cluster Ions for an Accurate Measurement of Aerosol Particle Size Distribution)

  • 정종환;이혜문;송동근;김태오
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.752-759
    • /
    • 2007
  • For an accurate measurement of aerosol particle size distribution using a differential mobility analyser (DMA), a new calculation process, capable of predicting the masses for the various kinds of water cluster ions generated from a bipolar ionizer, was prepared by improving the previous process. The masses for the 5 kinds of positive and negative water cluster ions produced from a SMAC ionizer were predicted by the improved calculation process. The aerosol particle charging ratios calculated by applying the predicted ion masses to particle charging equations were in good accordance with the experimentally measured ones, indicating that the improved calculation process are more reasonable than the previous one in a mass prediction of bipolar water cluster ions.

플라즈마내 입자의 하전특성에 관한 연구 (Monodisperse Particle Charging Characteristics in a DC-plasma)

  • 최석호;김곤호;안강호
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.261-266
    • /
    • 1998
  • 공정 플라즈마내에서 입자의 거동은 하전되는 입자의 극성과 하전량에 따르게 된다. 따라서 본 연구에서는 플라즈마내에서 입자의 거동을 이해하기 위한 기초 작업으로 입자의 하전 특성을 측정하였다. 본 연구에 사용된 단분산 입자는 직경 0.05$\mu\textrm{m}$, 0.07$\mu\textrm{m}$, 0.1$\mu\textrm{m}$, 0.2$\mu\textrm{m}$ 으로 이들 입자를 DC-공기 플라즈마내에 주입하여 이들의 하전량과 하전 극성 변화를 Faraday Cup을 이용하여 측정하였다. 본 실험에서 입자의 하전량과 하전 극성은 주입 입자 의 크기와 농도 및 플라즈마 발생조건 즉, 반응 압력, 전압 등에 영향을 받음을 알 수 있었 으며 입자 당 103~105의 평균 하전 수를 갖음이 관찰되었다.

  • PDF