• Title/Summary/Keyword: Particle board

Search Result 137, Processing Time 0.02 seconds

A Study on the Combustion Characteristics of Wood According to Flame Resistant Treatment (방염처리 방법에 따른 목재의 연소특성 연구)

  • Park, Sung-Hyun;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • This study has conducted an experiment of comparing the flame resistant performance and combustion characteristics according to flame resistant treatment using the Cypress Luba and particle board that is commonly used for interior decoration and furniture. As a result of testing the flame resistant performance of Cypress Luba, the Cypress Luba injected with flame resistant resin using the vacuum pressure treatment has shown to have better performances (carbonized area 9.55% and carbonized length 22.91%) than the Cypress Luba treated with flame resistant coating having rubberized plastic components on its surface. For particle board, the specimen attached with fireproof film was identified to be better (carbonized area 40.10% and carbonized length 43.40%) than the specimen with non-fireproof film. For the results of combustion characteristics using the Cone Calorimeter, the specimen treated with flame resistant coating on the surface had faster ignition than the Cypress Luba injected with fire resistant resin using vacuum pressure treatment, and in the total release of calories, the Cypress Luba injected with fire resistant resin using vacuum pressure had $68.2MJ/m^2$, and the specimen treated with fire resistant coating on the surface had $111.52MJ/m^2$. For the particle board, the ignition time had a little difference but in the total release of calories, the specimen attached with fireproof film had $90.1MJ/m^2$ and the specimen with non-fireproof film had $107.6MJ/m^2$.

Cosmic Ray Experiment on the KITSAT-1

  • Shin, Y.H.;Park, Y.W.;Min, K.W.;Kim, S.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.10-10
    • /
    • 1993
  • The cosmic ray experiment (CRE) on board the KITSAT-1 has been operating normally since the launch of the satellite. CRE is composed of two parts : the cosmic particle experiment (CPE) and the total dose experiment (TDE). Of these, we will discuss on the CPE results obtained the last several months. The data show much larger high energy Particle flux than the Previous UOSAT-3 data. The 550(single event upset) rate is also an order of magnitude higher than the UOSAT-3result. We will compare these results with the Bredictions of the CREME codel. ReferTncesAdams, J. H., Jr., 1987, NRL Memorandun Report 5901

  • PDF

Concentration distribution of aldehydes in various indoor microenvironments (다양한 실내 구역에서의 알데히드류의 농도 분포)

  • 이지호;박성은;신동천
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.439-440
    • /
    • 2000
  • 알데히드류는 실내의 다양한 오염원에서 발생되어 하루의 대부분을 실내에서 보내고 있는 현대인들에게 건강상 영향을 미치는 것으로 알려져 관심의 대상이 되어왔으며, 특히, 포름알데히드는 발암성 물질로 알려진 대표적인 실내 환경 오염 물질이기도 하다(Zhang junfeng et al., 1999). 포름알데히드는 urea 또는 phenol-formaldehyde 수지를 합성하는 주요 물질이며, 건축물 단열재, 가구의 염료 및 광택제, 접착제, 합판, particle board, 악취 제거제, 제지, 가스 스토브, 담배연기, 화장용품, 세제등 생활 용품에서 공업용품에 이르기까지 광범위하게 사용되며, 그 사용량도 증가되고 있다(Thomas J. Kelly et al., 1999). (중략)

  • PDF

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (II) - Development of Thin Composite by Composition Type Applied to Optimum Manufacturing Condition - (합판(合板) 대용(代用) 박판상(薄板狀) 복합재(複閤材) 제조(製造)에 관(關)한 연구(硏究) (II) -최상제조조건(最適製造條件)을 적용(適用)한 구성형태별(構成形態別) 박판상(薄板狀) 복합재(複閤材) 개발(開發)-)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.74-84
    • /
    • 1995
  • Eight types of thin composite panels were manufactured by press-lam and mat-forming process applied to optimum manufacturing condition, studied in former first research by author (1995). They were tested and compared with control boards on dimensional stability, internal bond strength, tensile strength, Screw withdrawal strength, and bending properties. These thin composite panels manufactured by mat-forming process were generally superior to those by press-lam in dimensional stability and mechanical properties. In the dimensional stability and mechanical properties of thin composite panels manufactured by mat-forming process, the thin composite panels (A and E type) composed of particle or sawdust core and veneer face with polyethylene film, were as good as those of common plywood (control board). Internal bond strength showed highest value in the thin composite panel(D type) which composed of particle core and polypropylene screen face with polyethylene film. The thin composite panels(G and H type) composed of sawdust or particle core and polypropylene screen face with polyethylene film by press-lam and mat-forming process, showed most highest value in dimensional stability and water absorption.

  • PDF

Nondestructive Bending Strength Evaluation of Ceramics Made from Miscanthus sinensis var. purpurascens Particle Boards - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Nondestructive evaluation (NDE) method by using a resonance frequency mode was carried out for ceramics made from particle boards with different phenol resin impregnation ratios (30, 40, 50, 60%) at carbonizing temperature of $800^{\circ}C$. The material for ceramics was Miscanthus sinensis var. purpurascens board. Dynamic modulus of elasticity increased with increasing impregnation ratio. There was a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made from Miscanthus sinensis var. purpurascens particle boards by different phenol resin impregnation ratios.

Studies on Comply-composites bonded with Particleboard and Veneer or Plywood (삭편판과 단판 또는 합판을 구성 접착한 콤플라이 복합재에 관한 연구)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.86-101
    • /
    • 1990
  • The primary objective of this research was to investigate the strength properties of Comply, a composite panel. fabricated with particle board as core material and veneer or plywood as face and back. 20types of comply composites were manufactured according to the four specific gravity levels(0.5, 0.6, 0.7 or 0.8) of particleboard core and three veneer or two plywood thicknesses for face and back. They were tested and compared with matching particleboard (control) on moisture content. specific gravity, bending properties(MOE, MOR SPL). nail resistance and internal bond strength. The obtained results were summarized as follows: The increasing effect of modulus of elasticity was shown by the increase of face and back veneer or plywood thickness. The modulus of rupture and stress at proportional limit of the comply composites bonded with 3mm thick veneers or 3mm thick plywood face and back were higher than 2mm thick veneer or 2mm thick plywood as face and back. Both of modulus of rupture and stress at proportional limit on bending of Comply were higher than those of control board. Also the modulus of elasticity of Comply showed much higher than that of control board. The nail resistance of Comply, composed of plywood as face and back was higher than that of veneer. The nail resistance of control board was higher than that of Comply at Sp.Gr 0.7 and 0.8 core boards. Internal bond of Comply, composed of 1mm and 2mm thick veneer as face and back was higher than that of 3mm thick veneer. The increasing effect of modulus of elasticity was shown by the increase of shelling ratio in Comply composed of veneer and plywood as face and back. The modulus of rupture was increased by the increment of shellmg ratio in Compiy, composed of plywood as face and back. The modulus of elasticity and modulus of. rupture of comply were higher than those of particleboard(control) in effect of shelling ratio. Therefore it was concluded that the mechanical property values of Comply were clearly greater than those of particleboard(control).

  • PDF

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

A Study on Mechanical Properties of Strand/Particle Composites(I) - Effect of Layer Constructions - (스트랜드/파티클 복합체의 기계적 성질에 관한 연구(I) - 단면구성이 기초물성에 미치는 영향 -)

  • Kim, Yu-Jung;Shibusawa, Tatsuya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • To develop the technology of producing structural board from low grade materials, an attempt was made to produce strand/particle composites from split wood strand(S) and particle(P) of (Cryptomeria japonica D. Don), which changed the layer construction and the ratio of S/P. The influence of layer construction on board properties was determined, focusing on the number and alignment of the S layers. The effect of weight ratio of S/P (3:7, 1:1, 7:3) on mechanical properties was also discussed on seven layered panel. Mechanical properties were determined from static bending tests to give parallel and perpendicular modulus of rupture (MOR) and modulus of elasticity (MOE), and the internal bond (IB) strength. In general, the surface strand layers contributed to the MOR and MOE. The parallel MOR and MOE values were the largest for the single layered S panel (only Slayers: S1), but the perpendicular MOR and MOE was the smallest. Perpendicular MOR and MOE were the largest for seven layered composite that had two cross oriented strand layers (SPSPSPS: SP7). Specimens retained more than half of their MOE and MOR after two hours in boiling water and one hour soaking. IB was the largest for the panel having only P layers, however, differences in IB strength were not identified among the other multi-layered composite panels thus the effect of layer construction on IB strength was small. Thickness swelling (TS) and surface roughness were smaller for the composite having P layers on the surface than for those having S layers. The addition of strands did not enhance the mechanical properties (MOR, MOE, IB). TS values for the panels, with which the S/P ratio was over than 1:1, was the similar to the value for the single layered S panels.

  • PDF

Outlook of Wood Products Markets with Supply and Demand Model (수급모형을 이용한 목제품 시장 전망)

  • Lee, Sang-Min;Kim, Kyeong-Duk;Song, Seong-Hwan;Bark, Ji-Eun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.462-472
    • /
    • 2014
  • This study is aimed at developing a supply-demand model of wood products, and outlook for mid-term and long-term supply and demand for each products. The main wood products include sawnwood, plywood, particle board, fiberboard (MDF), and pulp. The partial equilibrium model is composed of supply function, import demand function, demand function, price relation function. With given parameters the outlook for year 2050 says that sawnwood, plywood, and fiberboard for domestic productions and imports are decreased. This may result from the increase of log prices from the inside and outside of the country because of the propensity for environment protection and the resource nationalism. On the other hand the supply of particle board and pulp will increase because they are made from wasted wood and chips.

Effect of Carbonized Wastewoods on Soil Improvement(2) (목질폐잔재 탄화물의 토양개량 효과(2))

  • Shin, Chang-Seob;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.21-28
    • /
    • 2006
  • This study was carried out to examine the effect of soil improvement according to the shape of charcoal and the kind of carbonized tree species. As the results, all of the seedlings of Thuja occidentalis and Aesculus turbinata grew better in the charcoal-treated soil than the non-treated soil. In case of powder charcoal, Thuja occidentalis seedlings grew up best in the soil treated with powder charcoal of Pinus koraiensis and then grew well in order of Larix leptolepis > particle board > Quercus acutissima. In case of granulated charcoal, the seedlings grew well in order of the granulated charcoal of Larix leptolepis > particle board > Pinus koraiensis. It was analyzed that the soil porosity and the organic matter content were mo re in the charcoal -treated soil than the non-treated soil also. It is inferred that because the aeration property and the absorption of organic matter were increased in the root zone, the growth of seedlings was better in the char-coal-treated soil.