• Title/Summary/Keyword: Particle beam

Search Result 386, Processing Time 0.025 seconds

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

Radiation Therapy against Pediatric Malignant Central Nervous System Tumors : Embryonal Tumors and Proton Beam Therapy

  • Lim, Do Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.386-392
    • /
    • 2018
  • Radiation therapy is highly effective for the management of pediatric malignant central nervous system (CNS) tumors including embryonal tumors. With the increment of long-term survivors from malignant CNS tumors, the radiation-related toxicities have become a major concern and we need to improve the treatment strategies to reduce the late complications without compromising the treatment outcomes. One of such strategies is to reduce the radiation dose to craniospinal axis or radiation volume and to avoid or defer radiation therapy until after the age of three. Another strategy is using particle beam therapy such as proton beams instead of photon beams. Proton beams have distinct physiologic advantages over photon beams and greater precision in radiation delivery to the tumor while preserving the surrounding healthy tissues. In this review, I provide the treatment principles of pediatric CNS embryonal tumors and the strategic improvements of radiation therapy to reduce treatment-related late toxicities, and finally introduce the increasing availability of proton beam therapy for pediatric CNS embryonal tumors compared with photon beam therapy.

Electron Beam Propagation in a Plasma

  • Min, Kyoung-W.;Koh, Woo-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1988
  • Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma interactions. It is found that the return currents are enhanced by the beam-plasma instability which accelerates ambinet plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The electromagnetic simulations show much the same results as the electrostatic simulations do. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context in context of the heating of coronal plasma during solar flares.

  • PDF

Design of the vacuum pumping system for the KSTAR NBI device (KSTAR 중성빔 입사(NBI) 장치 배기계통 설계)

  • 오병훈;인상렬;조용섭;김계령;최병호
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.548-555
    • /
    • 1999
  • The NBI (Neutral BGeam Injection) System for the Korea Superconducting Tokamak Advanced Research (KSTAR) is composed of ion sources, neutralizers, bending magnets, ion dumps, and calorimeter. The vacuum chamber, in which all of the beam line components are enclosed, is composed of differential pumping system for the effective transfer of the neutral beams. The needed pumping speeds of each of the divided vacuum chamber and the optimized gas flow rate ot the neutralizer were calculated with the help of the particle balance equations. The minimum gas flow rate to the ion sources for producing needed beam current (120kV, 65A, 78MW), the pressure distributions in the vacuum chamber for minimizing re-ionization loss, and the beam loss rate on the beam line components were used as the input in the calculation. Also the scenario for short pulse operation was determined by analysing the time dependent equations. It showed that beam extraction during less than 0.5 sec could be made only with TMP.

  • PDF

Analysis of Particle Collision on a Rotating Cantilever Beam Having a Concentrated Mass (집중 질량을 가진 회전하는 외팔 보의 질점 충돌 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.714-714
    • /
    • 2005
  • This paper presents the modeling and impact analysis for a rotating cantilever beam having a concentrated mass. The concentrated mass takes an impact force during the rotating motion and the transient response of the beam induced by the impact is calculated by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rotating motion is considered in this modeling. The effects of the concentrated mass size, impact position and the angular velocity of the beam on the transient responses are investigated through numerical studies.

  • PDF

A Multi-megawatt Long Pulse Ion Source of Neutral Beam Injector for the KSTAR

  • Chang, Doo-Hee;Seo, Chang-Seog;Jeong, Seung-Ho;Oh, Byung-Hoon;Lee, Kwang-Won;Kim, Jin-Choon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.719-720
    • /
    • 2004
  • A multi-megawatt long pulse ion source (LPIS) of neutral beam injector was developed for the KSTAR. Beam extraction experiments of the LPIS were carried out at the neutral beam test stand (NBTS). Design requirements for the ion source were 120 kV/65 A deuterium beam and a 300 s pulse length. A maximum ion density of $9.1310^{11}$ $cm^{-3}$ was measured by using electric probes, and an optimum arc efficiency of 0.46 A/kW was estimated with ion saturation current of the probes, arc power, and total beam area. An arcing problem, caused by the structural defect of decelerating grid supporter, in the third gap was solved by the blocking of backstream ion particles, originated from the plasma in the neutralizer duct, through the unnecessary spaces on the side of grid supporter. A maximum drain power of 1.5 MW (i.e. 70 kV/21 A) with hydrogen was measured for a pulse duration of 0.5 s. Optimum beam perveance was ranged from 0.75 to 0.85. An improved design of accelerator for the effective control of beam particle trajectory should provide higher beam perveance.

  • PDF

Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

  • Kim, Sangbum;Duong, Pham van;Ha, Donghyup;Oh, Young-Hoon;Kang, Won Nam;Hong, Seung Pyo;Kim, Ranyoung;Chai, Jong Seo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.8-13
    • /
    • 2016
  • Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV ${\alpha}$-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

Electrochemical Study on PVDF-HFP/Silylated Al2O3-coated PE Separators using the Electron Beam Irradiation for Lithium Secondary Battery (전자선을 이용한 PVDF-HFP/Silylated Al2O3가 코팅된 리튬 이차 전지용 폴리에틸렌 분리막의 전기화학적 특성 연구)

  • Sohn, Joon-Yong;Shin, Junhwa;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.359-364
    • /
    • 2010
  • PVDF-HFP (binder)/silylated alumina (inorganic particle)-coated PE (polyethylene) separators were with various compositions of binder and inorganic particle were prepared by a dip-coating process with humidity control (R.H. 25% and 50%) using electron beam irradiation. The morphology of the coated PVDF-$HFP/Al_2O_3$ layer with various compositions of PVDF-HFP and $Al_2O_3$, and humidity condition was found to be an important factor in determining ionic conductivity of the prepared separators. The PVDF-$HFP/Al_2O_3$ (5/5)-coated PE separator prepared at R.H. 50% followed by electron beam irradiation at 200 kGy was applied for lithium-ion polymer battery and the cell test results showed improved high-rate discharge performance and better cyclic stability compared to the cells with the bare PE and the PVDF-HFP-coated PE separators.