• Title/Summary/Keyword: Particle assembly

Search Result 134, Processing Time 0.023 seconds

Development of a Durable Startup Procedure for PEMFCs (고분자전해질 연료전지 내구성 향상을 위한 시동 기술 개발에 관한 연구)

  • Kim, Jae-Hong;Jo, Yoo-Yeon;Jang, Jong-Hyun;Kim, Hyung-Juhn;Lim, Tae-Hoon;Oh, In-Hwan;Cho, Eun-Ae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.288-294
    • /
    • 2009
  • Various polymer electrolyte membrane fuel cell (PEMFC) startup procedures were tested to explore possible techniques for reducing performance decay and improving durability during repeated startup-shutdown cycles. The effects of applying a dummy load, which prevents cell reversal by consuming the air at the cathode, on the degradation of a membrane electrode assembly (MEA) were investigated via single cell experiments. The electrochemical results showed that application of a dummy load during the startup procedure significantly reduced the performance decay, the decrease in the electrochemically active surface area (EAS), and the increase in the charge transfer resistance ($R_{ct}$), which resulted in a dramatic improvement in durability. After 1200 startup-shutdown cycles, post-mortem analyses were carried out to investigate the degradation mechanisms via various physicochemical methods including FESEM, an on-line $CO_2$ analysis, EPMA, XRD, FETEM, SAED, FTIR. After 1200 startup-shutdown cycles, severe Pt particle sintering/agglomeration/dissolution and carbon corrosion were observed at the cathode catalyst layer when starting up a PEMFC without a dummy load, which significantly contributed to a loss of Pt surface area, and thus to cell performance degradation. However, applying a dummy load during the startup procedure remarkably mitigated such severe degradations, and should be used to increase the durability of MEAs in PEMFCs. Our results suggest that starting up PEMFCs while applying a dummy load is an effective method for mitigating performance degradation caused by reverse current under a repetition of unprotected startup cycles.

  • PDF

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

In Vitro Formation of Protein Nanoparticle Using Recombinant Human Ferritin H and L Chains Produced from E. coli

  • RO HYEON SU;PARK HYUN KYU;KIM MIN GON;CHUNG BONG HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.254-258
    • /
    • 2005
  • We have conducted in vitro reconstitution study of ferritin from its subunits FerH and FerL. For the reconstitution, FerH was produced from an expression vector construct in Escherichia coli and was purified from a heat treated cell extract by using one-step column chromatography. FerL was expressed as inclusion bodies. The denatured form of FerL was obtained by a simple washing step of the inclusion bodies with 3 M urea. The reconstitution experiment was conducted with various molar ratios of urea-denatured FerH and FerL to make the ferritin nanoparticle with a controlled composition of FerH and FerL. SDS-PAGE analysis of the reconstituted ferritins revealed that the reconstitution required the presence of more than 40 molar$\%$ of FerH in the reconstitution mixture. The assembly of the subunits into the ferritin nanoparticle was confmned by the presence of spherical particles with diameter of 10 nm by the atomic force microscopic image. Further analysis of the particles by using a transmission electron microscope revealed that the reconstituted particles exhibited different percentages of population with dense iron core. The reconstituted ferritin nanoparticles made with molar ratios of [FerH]/[FerL]=l00/0 and 60/40 showed that 80 to $90\%$ of the particles were apoferritin, devoid of iron core. On the contrary, all the particles formed with [FerH]/[FerL]=85/ 15 were found to contain the iron core. This suggests that although FerH can uptake iron, a minor portion of FerL, not exceeding $40\%$ at most, is required to deposit iron inside the particle.

Development and Application of an Explosion Modeling Technique Using PFC (PFC3D에서의 폭원모델링 기법의 개발 및 적용)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.7-15
    • /
    • 2004
  • An explosion modeling technique was developed by using the spherical discrete element code, PFC3D, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a PFC3D particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). According to this concept, the explosion pressure is applied to the wall particles by the scheme of radius expansion/contraction of inner-hole particles. The output wall force is compared to the input hole pressure in every time step, and a correction routine is activated to control the radius multiplier of the inner-hole particles. A comparative blast simulation far a cement mortar block of $80\times90\times80mm$ was conducted by using the conventional explosion modeling method and the new one. The results of the simulation are presented in a qualitative fashion.

Numerical Modeling of Large Triaxial Compression Test with Rockfill Material Considering 3D Grain Size Distribution (3차원 입도분포를 고려한 락필재료의 대형삼축압축시험 수치모델링)

  • Noh, Tae Kil;Jeon, Je Sung;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.55-62
    • /
    • 2012
  • In this research, the algorithm for simulating specific grain size distribution(GSD) with large diameter granular material was developed using the distinct element analysis program $PFC^{3D}$(Particle Flow Code). This modeling approach can generate the initial distinct elements without clump logic or cluster logic and prevent distinct element from escaping through the confining walls during the process. Finally the proposed distinct element model is used to simulate large triaxial compression test of the rockfill material and we compared the simulation output with lab test results. Simulation results of Assembly showed very well agreement with the GSD of the test sample and numerical modeling of granular material would be possible for various stress conditions using this application through the calibration.

Fabrication of Hollow Micro-particles with Nonspherical Shapes by Surface Sol-gel Reaction (표면 솔-젤 반응을 활용한 마이크로미터 크기의 비구형상 공동 입자의 제조)

  • Cho, Young-Sang;Jeon, Seog-Jin;Yi, Gi-Ra
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.611-618
    • /
    • 2007
  • We demonstrate the sol-gel coating technique of colloidal clusters for producing hollow micro-particles with complex morphologies. Cross-linked amidine polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion copolymerization of styrene and divinylbenzene. The amidine PS particles were self-organized inside toluene-in-water emulsion droplets to produce large quantities of colloidally stable clusters. These clusters were coated with thin silica shell by sol-gel reaction of tetraethylorthosilicate (TEOS) and ammonia, and the organic polystyrene cores were removed by calcination at high temperature to generate nonspherical hollow micro-particles with complex morphologies. This process can be used to prepare hollow particles with shapes such as doublets, tetrahedra, icosahedra, and others.

Platinum Nanoparticles Synthesis using Recovered Platinum from Waste Fuel cell (폐연료전지(廢燃料電池)스택으로부터 회수(回收)된 백금(白金)의 나노 입자(粒子) 제조(製造))

  • Kim, Young-Ae;Kwon, Hyun-Ji;Koo, Jeong-Boon;Kwak, In-Seob;Sin, Jang-Sik
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • In this study, for recovery of renewable noble metal from used stack of fuel cell, synthesis of platinum nano particle is established through effect of platinum solution concentration, pH value, reducing agent and dispersing agent at a volume ratio of 1 mM $H_2PtCl_6$:10 mM $NaBH_4$:8 mM Cl4TABr = 1:0.4:0.4(vol.%), pH4, $50^{\circ}C$, 160 rpm and 10min. Less than 5 nm platinum particles were synthesized using Pt leaching solution from used MEA of stack under same condition of method using simulated Pt solution. The characteristics of synthesized nano particles was illustrated by XPS analysis as the reduction of platinum ions into platinum metals(zero-valent).

PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly

  • Zhang, Cheng;Ju, Haoran;Zhang, Dalin;Wu, Shuijin;Xu, Yijun;Wu, Yingwei;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.897-907
    • /
    • 2020
  • The flow characteristics of reactor fuel assembly always intrigue the designers and the experimentalists among the myriad phenomena that occur simultaneously in a nuclear core. In this work, the visual experimental method has been developed on the basis of refraction index matching (RIM) and particle image velocimetry (PIV) techniques to investigate the detailed flow characteristics in China fast reactor fuel subassembly. A 7-rod bundle of simulated fuel subassembly was fabricated for fine examination of flow characteristics in different subchannels. The experiments were performed at condition of Re=6500 (axial bulk velocity 1.6 m/s) and the fluid medium was maintained at 30℃ and 1.0 bar during operation. As for results, axial and lateral flow features were observed. It is shown that the spiral wire has an inhibitory effect on axial flow and significant intensity of lateral flow mixing effect is induced by the wire. The root mean square (RMS) of lateral velocity fluctuation was acquired after data processing, which indicates the strong turbulence characteristics in different flow subchannels.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.