• Title/Summary/Keyword: Particle Tracking Method

Search Result 205, Processing Time 0.021 seconds

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.

Particle Filtering based Object Tracking Method using Feedback and Tracking Box Correction (피드백과 박스 보정을 이용한 Particle Filtering 객체추적 방법론)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • The object tracking method using particle filtering has been proved successful since it is based on the Monte Carlo simulation to estimate the posterior distribution of the state vector that is nonlinear and non-Gaussian in the real-world situation. In this paper, we present two nobel methods that can improve the performance of the object tracking algorithm based on the particle filtering. First one is the feedback method that replace the low-weighted tracking sample by the estimated state vector in the previous frame. The second one is an tracking box correction method to find an confidence interval of back projection probability on the estimated candidate object area. An sample propagation equation is also presented, which is obtained by experiments. We designed well-organized test data set which reflects various challenging circumstances, and, by using it, experimental results proved that the proposed methods improves the traditional particle filter based object tracking method.

Development of new integrated particle tracking techniques combining the numerical method, semi-analytical method, and analytical method (수치, 해석적, 준 해석적 및 해석적 방법을 통합한 새로운 입자추적기술 개발)

  • Suk, Hee-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.50-61
    • /
    • 2008
  • In this study, new integrated particle tracking algorithm was developed to reduce the inherent problem of Eulerian- Lagrangian method, or adverse effect of particle tracking error on mass balance error. The new integrated particle tracking algorithm includes numerical method, semi-analytical method, and analytical method which consider both temporal and spatial changes of velocity field during time step. Detail of mathematical derivations is well illustrated and four examples are made to verify through the comparison of the new integrated particle tracking with analytical solution or Runge-Kutta method. Additionally, It was shown that the there is better superiority of the new integrated particle tracking algorithm over other existing particle tracking method such as Lu's method.

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

Particle tracking algorithm for the Lagrangian-Eulerian finite element method

  • 석희준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.97-100
    • /
    • 2004
  • Multivariate Newton Raphson method is developed to perform the particle tracking in the three dimensional area using four objective functions. In this method, three variables are solved to compute target point and actual and real tracking time. The simulated pathlines in various types of three dimensional elements are well matched with exact pathline.

  • PDF

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space (공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

Object Tracking Using Particle Filter with an Improved Observe Method (개선된 Observe 기법을 적용한 Particle Filter 물체 추적)

  • Cho, Hyun-Joong;Lee, Chul-Woo;Jung, Jae-Gi;Kim, Jin-Yul
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.210-212
    • /
    • 2009
  • In object tracking based on the particle filter algorithm controlling the proper distribution of the samples is essential to accurately track the target. If the samples are spread too wide compared to the target size, the tracking accuracy may degrade as some samples can be caught by background clutters that is similar to the target. On the other hands if the samples are spread too narrow, the particle filter may fail to track the abrupt motion of the target. To solve this problem we propose an improved particle filter that adopts "re-weighting" technique at the observe step. We estimate the distribution of the weights of the current samples by its mean and variance. Then the samples are re-weighted so that the appropriate distribution of the samples in proportional to the target scale is obtained at the next select step. The proposed tracking method can avoid convergence to local mean and improve the accuracy of the estimated target state.

  • PDF

Development and Application of Streamline Analysis Method (유선 분석법의 개발 및 적용)

  • Kim Tae Beom;Lee Chihyung;Cheong Jae-Yeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • In order to properly evaluate the spatio-temporal variations of groundwater flow, the data obtained in field experiments should be corroborated into numerical simulations. Particle tracking method is a simple simulation tool often employed in groundwater simulation to predict groundwater flow paths or solute transport paths. Particle tracking simulations visually show overall the particle flow path along the entire aquifer, but no previous simulation studies has yet described the parameter values at grid nodes around the particle path. Therefore, in this study, a new technical approach was proposed that enables acquisition of parameters associated with particle transport in grid nodes distributed in the center of the particle path in groundwater. Since the particle tracking path is commonly referred to as streamline, the algorithm and codes developed in this works designated streamline analysis method. The streamline analysis method can be applied in two-dimensional and three-dimensional finite element or finite difference grid networks, and can be utilized not only in the groundwater field but also in all fields that perform numerical modeling.