• Title/Summary/Keyword: Particle Swarm Optimizer

Search Result 13, Processing Time 0.019 seconds

Gamma ray interactions based optimization algorithm: Application in radioisotope identification

  • Ghalehasadi, Aydin;Ashrafi, Saleh;Alizadeh, Davood;Meric, Niyazi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3772-3783
    • /
    • 2021
  • This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.

Optimal Structural Design Framework of Composite Rotor Blades Using PSGA (PSGA를 이용한 복합재료 블레이드의 최적 구조설계 프레임워크 개발 연구)

  • Ahn, Joon-Hyek;Bae, Jae-Seong;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • In this study, an optimal structural design framework has been developed for the structural design of composite helicopter blades. The optimal design framework is constructed using PSGA (Particle Swarm assisted Genetic Algorithm), which combines the genetic algorithm and particle swarm optimizer. The optimization process consists of a finite element (FE) modeling over the blade section, two-dimensional (2D) cross-sectional FE analysis, and 1D rotating blade analysis. In the design process, the geometric curves and surfaces are formed using the B-spline scheme while discretizing the sections via a FE mesh generation program Gmsh. The blade cross-sections are created in accordance with the design variables when performing the blade structural analysis. The proposed optimization design framework is applied to a modernization of the HART II (Higher-harmonic Aeroacoustics Rotor Test II) blades. It is demonstrated that an improved blade design is reached through the current optimization framework with the satisfaction of all design requirements set for the study.

Optimal Structural Design of Composite Helicopter Blades using a Genetic Algorithm-based Optimizer PSGA (유전자 알고리즘 PSGA를 이용한 복합재료 헬리콥터 블레이드 최적 구조설계)

  • Chang, Se Hoon;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.340-346
    • /
    • 2022
  • In this study, an optimal structural design of composite helicopter blades is performed using the genetic algorithm-based optimizer PSGA (Particle Swarm assisted Genetic Algorithm). The blade sections consist of the skin, spar, form, and balancing weight. The sectional geometries are generated using the B-spline curves while an opensource code Gmsh is used to discretize each material domain which is then analyzed by a finite element sectional analysis program Ksec2d. The HART II blade formed based on either C- or D-spar configuration is exploited to verify the cross-sectional design framework. A numerical simulation shows that each spar model reduces the blade mass by 7.39% and 6.65%, respectively, as compared with the baseline HART II blade case, while the shear center locations being remain close (within 5% chord) to the quarter chord line for both cases. The effectiveness of the present optimal structural design framework is demonstrated, which can readily be applied for the structural design of composite helicopter blades.