• 제목/요약/키워드: Particle Swarm Optimization

검색결과 719건 처리시간 0.025초

Utilizing Particle Swarm Optimization into Multimodal Function Optimization

  • ;;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.86-89
    • /
    • 2008
  • There are some modified methods such as K-means Clustering Particle Swarm Optimization and Niching Particle Swarm Optimization based on PSO which aim to locate all optima in multimodal functions. K-means Clustering Particle Optimization could locate all optima of functions with finite number of optima. Niching Particle Swarm Optimization is able to locate all of optima but high computing time. Because of those disadvantages, we proposed a new method that could locate all of optima with reasonal time. We applied our method and others as well to analytic functions. By comparing the outcomes, it is shown that our method is significantly more effective than the two others.

  • PDF

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

Multi-modal 최적화를 위한 다중 그룹 Particle Swarm 전략 (Multi-Grouped Particle Swarm Strategy for Multi-modal Optimization)

  • 서장호;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1026-1028
    • /
    • 2005
  • 본 논문에서는 PSO(Particle Swarm Optimization)에 기초하여 multi-modal 최적화를 위한 다중 그룹 Particle Swarm 최적화 알고리즘(MGPSO)을 제안하였다. 제안된 알고리즘은 PSO의 기본 특성을 유지하기 때문에 기존의 혼합형 타입의 최적화 방식에 비하여 빠른 수렴 시간을 가지며 구성방식이 간단하다. 여러 개의 피크를 가지는 테스트 함수를 통해 본 논문에서 제시한 알고리즘의 타당성을 입증하였으며, 영구자석 매입형 전동기의 최적 설계에 적용하여 그 유용성을 확인하였다.

  • PDF

PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화 (Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization)

  • 김승석;김용태;김주식;전병석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.

APSO 알고리즘을 이용한 센서노드용 원형편파 안테나 최적설계 (An Optmival design of Circularly Polarization Antenna for Sensor Node using Adaptive Particle Swarm Optimization)

  • 김군태;강성인;오승훈;이정혁;한준희;장동혁;오초;김형석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.682-685
    • /
    • 2014
  • 본 논문에서는 센서노드용 원형편파 안테나의 설계하였다. 확률론적 방법인 Particle Swarm Optimization(PSO) 알고리즘과 Adaptive Particle Swam Optimization(APSO) 알고리즘을 구현하고 성능비교를 통해 안테나 최적설계에 적합한 알고리즘을 결정하였다. PSO는 41번, APSO는 27번의 계산 결과 수렴을 하였다. 두 알고리즘 모두 최적설계에서 목표값을 모두 만족을 하였으나 수렴도에서 APSO가 빠르게 수렴한 것을 확인할 수 있었다.

  • PDF

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

Hybrid PSO and SSO algorithm for truss layout and size optimization considering dynamic constraints

  • Kaveh, A.;Bakhshpoori, T.;Afshari, E.
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.453-474
    • /
    • 2015
  • A hybrid approach of Particle Swarm Optimization (PSO) and Swallow Swarm Optimization algorithm (SSO) namely Hybrid Particle Swallow Swarm Optimization algorithm (HPSSO), is presented as a new variant of PSO algorithm for the highly nonlinear dynamic truss shape and size optimization with multiple natural frequency constraints. Experimentally validation of HPSSO on four benchmark trusses results in high performance in comparison to PSO variants and to those of different optimization techniques. The simulation results clearly show a good balance between global and local exploration abilities and consequently results in good optimum solution.

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

Hybrid Particle Swarm Optimization 기법을 적용한 X-대역 광대역 편파 변환기 설계 (Design of X-band Broadband Twist Reflector Using Hybrid Particle Swarm Optimization)

  • 황금철
    • 한국전자파학회논문지
    • /
    • 제20권4호
    • /
    • pp.390-395
    • /
    • 2009
  • 본 논문에서는 미앤더 스트립라인을 이용한X-대역 광대역 편파 변환기 설계 및 최적화 문제에 대해서 고찰하였다. 편파 변환기에 입사되는 편파를 수직, 수평 성분으로 분리하고 각 편파별로 등가 전송선 모델(transmission line model)을 사용하여 교차 편파 억제율과 편파 변환율을 계산하였다. 또한, 최적화된 파라미터 도출을 위해 유전 알고리즘과 particle swarm optimization에 기반한 하이브리드 알고리즘의 성능을 평가하고 설계에 적용하였다. 최적화된 편파 변환기는 X-대역(8.45$\sim$11.38 GHz)에서 -25 dB 이하의 편파 억제 성능을 보여주고 있으며, 편파 변환 손실은 0.2 dB 이하로 계산되었다. 또한, 이 결과를 상용 시뮬레이션 수치와 비교 분석하였다.