• Title/Summary/Keyword: Particle Position

Search Result 342, Processing Time 0.025 seconds

Characterization of a Magnetron Sputtering Cathode by a 3D Particle Model (3차원 입자 모델을 이용한 마그네트론 스퍼터링 음극의 특성 분석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.205-213
    • /
    • 2008
  • A 3D particle code is developed to analyze electron behavior in a planar magnetron sputtering cathode either in balanced or unbalanced configuration. Three types of collisions are included; electron - neutral elastic, excitation to a metastable state and ionization. Flight path is calculated by a 4-th order Runge-Kutta method with a time step of 10 ps. Effects of electron starting position, magnetic field intensity and configuration were analyzed. For a more efficient and accurate modeling, multithreading technique is considered for multicore CPU computers. Under an assumption of cold ion approach, target erosion profiles are predicted for a flat target surface.

Development of an Analysis Program for Pedestrian Flow based on the Discrete Element Method (이산요소법을 이용한 보행류 해석 프로그램 개발)

  • Nam, Seong-Won;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3197-3202
    • /
    • 2007
  • An analysis program for pedestrian flow has been developed to investigate the flow patterns of passenger in railway stations. Analysis algorithms for pedestrian flow based on DEM(Discrete Element Method) are newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.

  • PDF

Comparative Study on Dimensionality and Characteristic of PSO (PSO의 특징과 차원성에 관한 비교연구)

  • Park Byoung-Jun;Oh Sung-Kwun;Kim Yong-Soo;Ahn Tae-Chon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.328-338
    • /
    • 2006
  • A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.

Channel Design of Decanter-Type Centrifuge (II) - Particles' Sediment and the Bowl Length (원심분리기의 채널 설계(II) - 입자의 침강문제와 보울 길이)

  • 서용권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.108-116
    • /
    • 2003
  • In this paper, based on the concept of solid particles' sediment problem the working formula determining the bowl length of a Decanter-type centrifuge were derived. Assuming that particles are uniformly distributed along the vertical line of the liquid inlet position, it was possible to derive a constant value k used for determining the bowl length. It was shown from the sample calculations that the bowl length should be increased as the particle size to be removed from the liquid is decreased. The length also should be increased for the same particle size as the bowl diameter is decreased. To help the engineers choose a reasonable bowl diameter, the statistical relationship between the bowl diameter and the capacity of the international products is obtained and presented.

Terrain-Based Localization using Particle Filter for Underwater Navigation

  • Kim, Jin-Whan;Kim, Tae-Yun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2011
  • Underwater localization is a crucial capability for reliable operation of various types of underwater vehicles including submarines and underwater robots. However, sea water is almost impermeable to high-frequency electromagnetic waves, and thus absolute position fixes from Global Positioning System (GPS) are not available in the water. The use of acoustic telemetry systems such as Long Baseline (LBL) is a practical option for underwater localization. However, this telemetry network system needs to be pre-deployed and its availability cannot always be assumed. This study focuses on demonstrating the validity of terrain-based localization techniques in a GPS-denied underwater environment. Since terrain-based localization leads to a nonlinear estimation problem, nonlinear filtering methods are required to be employed. The extended Kalman filter (EKF) which is a widely used nonlinear filtering algorithm often shows limited performance under large initial uncertainty. The feasibility of using a particle filter is investigated, which can improve the performance and reliability of the terrain-based localization.

PHASE VARIATION IN DOPPLER SIGNAL FOR VARIOUS OPTICAL PARAMETERS

  • Son, Jung-Young;Kim, Myung-Sik;Oh, Myung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.629-632
    • /
    • 1989
  • The scattered light intensity from a spherical particle passing through the cross-over region of two coherent laser beams, varies periodically. Photodetection of this light beams produces a periodic signal of varying amplitude. The phase of the signal varies with the particle size and refractive index, the beam crossing angle and wavelength, and the position and size of the scattered ligth collecting aperture. In this paper the phase variation with respect to the particle absorptive index of retraction, collecting lens size and beam crossing angle is calculated using both Mie scattering theory and reflection theory. The two theories show good agreement in phase predictions, especially for large absorptive indices and for small collection lenses. Both theories predict phase to be inversely proportional to the beam crossing angle.

  • PDF

Study on Coil Insulation of HTS Transformer with Simulated Electrode (고온초전도 코일의 모의 전극계에서의 절연연구)

  • 정종만;백승명;이정원;곽동순;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.420-423
    • /
    • 2002
  • In this paper the characteristics of surface flashover for high temperature superconducting transformer(HTS) was discussed. The transformer, will be developed in the shell type with double pancake coil, isn't developed yet in the world. We conducted experiment of surface flashover that could occur in the windings of the transformer. First, we distinguished the surface flashover with electrode alignment into two type, such as parallel and vertical, and then compared with each characteristics of surface flashover. And the surface flashover with metallic particle was tested, it was also affected by the particle position. .

  • PDF

Development of Three Phase Optimal Power Flow for Distributed Generation Systems (분산전원계통을 위한 3상 최적조류계산 프로그램 개발)

  • Song, Hwa-Chang;Cho, Sung-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.882-889
    • /
    • 2010
  • This paper presents a method of finding the optimal operating point minimizing a given objective function with 3 phase power flow equations and operational constraints, called 3 phase optimal power flow (3POPF). 3 phase optimal power flow can provide operation and control strategies for the distribution systems with distributed generation assets, which might be frequently in unbalanced conditions assuming that high penetration rate of renewable energy sources in the systems. As the solution technique for 3POPF, this paper adopts a simulation-based method of particle swarm optimization (PSO). In the PSO based 3POPF, a utility function needs to be defined for evaluation of the degree in operational improvement of each particle's current position. To evaluate the utility function, in this paper, NR-based 3 phase power flow algorithm was developed which can deal with looped distributed generation systems. In this paper, illustrative examples with a 5-bus and a modified IEEE 37-bus test systems are given.

Analysis of Pedestrian Flow Characteristics in Subway Station (지하역사 기본 모델에 대한 여객 유동 특성 해석)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.271-276
    • /
    • 2006
  • Insight into behaviour of pedestrians as welt as tools to assess passenger flow condition is important in such instances as planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM (Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

Hierarchical sampling optimization of particle filter for global robot localization in pervasive network environment

  • Lee, Yu-Cheol;Myung, Hyun
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.782-796
    • /
    • 2019
  • This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.