• 제목/요약/키워드: Particle Position

검색결과 342건 처리시간 0.03초

Gas Dynamical Evolution of Central Regions of Barred Galaxies

  • 서우영;김웅태
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • We investigate dynamical evolution of gas in barred galaxies using a high-resolution, grid-based hydrodynamic simulations on two-dimensional cylindrical geometry. Non-axisymmetric gravitational potential of the bar is represented by the Ferrers ellipsoids independent of time. Previous studies on this subject used either particle approaches or treated the bar potential in an incorrect way. The gaseous medium is assumed to be infinitesimally-thin, isothermal, unmagnetized, and initially uniform. To study the effects of various environments on the gas evolution, we vary the gas sound speed as well as the mass of a SMBH located at the center of a galaxy. An introduction of the bar potential produces bar substructure including a pair of dust lane shocks, a nuclear ring, and nuclear spirals. The sound speed affects the position and strength of the bar substructure significantly. As the sound speed increases, the dust lane shocks tend to move closer to the bar major axis, resulting in a smaller-size nuclear ring at the galactocentric radius of about 1 kpc. Nuclear spirals that develop inside a nuclear ring can persist only when either sound speed is low or in the presence of a SMBH; they would otherwise be destroyed by the ring material with eccentric orbits. The mass inflow rates of gas toward the galactic center is also found to be proportional to the sound speed. We find that the sound speed should be 15 km/s or larger if the mass inflow rate is to explain nuclear activities in Seyfert galaxies.

  • PDF

Structural, Electrical and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.97-101
    • /
    • 2005
  • ZnO thin films were grown at different plume-substrate (P-S) angles of 90$^{\circ}$ (on-axis PLD), 45$^{\circ}$ and 0$^{\circ}$ (off-axis PLD) using pulsed laser deposition. The x-ray diffraction pattern exhibiting a dominant (002) and a minor (101) peak of ZnO indicates all films were strongly c-axis oriented. By observing of (002) peak, the FWHMs of ZnO (002) peaks decreased and c-axis lattice constant approached the value of bulk ZnO as P-S angle decreased. Whereas the carrier concentration of ZnO thin film deposited at P-S angle of 90$^{\circ}$ was ~ 10$^{19}$ /cm$^{3}$, the Hall measurement of ZnO thin films deposited at P-S angles of 0$^{\circ}$ and 45$^{\circ}$ was impossible due to the decrease of the carrier concentration by the improvement of stoichiometry and crystalline quality. By decreasing P-S angle, the grain size of the films and the UV intensity investigated by photoluminescence (PL) increased and UV peak position showed red shift. The improvement of properties in ZnO thin films deposited by off-axis technique was due to the decrease of repulsive force between a substrate and the particle in plume and the relaxation of supersaturation.

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(2) - ISM와 PIV 측정의 비교 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(2) - Comparison of ISM and PIV Measurement)

  • 박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.139-147
    • /
    • 2015
  • This paper is the second investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous work, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation might cause serious problems. In this study, intake valve angle is selected as a main parameter for the assessment because the main flow direction to cylinder governed by this angle has the strongest influence on the in-cylinder flow pattern. For this purpose, four heads, which have the different angle, are prepared and the flow characteristics are estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75 times bore position apart from the cylinder head, which is widely used plane in the steady flow measurement. The results show that both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75 plane, however, the effects of two factors act in the opposite direction. In addition, the profile's influence is much greater than that of the eccentricity.

침적 입자를 고려한 유동해석을 통한 신형 탈황설비용 GGH 요소 최적화 (Optimization of the Gas-Gas Heater Element for Desulfurization Equipment through Fluid Analysis of considering Deposition Particles)

  • 오부진;류봉조;이영신;김종호;백수곤
    • 한국소음진동공학회논문집
    • /
    • 제20권7호
    • /
    • pp.611-619
    • /
    • 2010
  • The paper deals with the proper design of GGH(gas-gas heater) panel elements of desulfurization equipments in a thermoelectric power plant. When fossil fuels such as coal, petroleum et cetera are burnt to ashes, sulfur oxide compounds are produced, and calcareous sludges are deposited at GGH panel elements. In this case, operation of a power plant equipments is interrupted, and a tremendous economic loss comes into existence. One of the purposes of the paper is to find flow velocity distributions and regions of depositions when calcareous sludges pile up on the GGH panel elements through the fluid analysis. In the fluid analysis, flow velocity and position distributions of particles between GGH panel elements are demonstrated according to time variation for ammonia and calcium hydroxide particles.

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles

  • Phromsuwan, U.;Sirisathitkul, C.;Sirisathitkul, Y.;Uyyanonvara, B.;Muneesawang, P.
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.311-316
    • /
    • 2013
  • Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.

A Study on the Sensitivity of Self-Powered Neutron Detectors(SPNDs) and a new Proposal

  • Lee, Wanno;Gyuseong Cho
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.445-450
    • /
    • 1997
  • Self-Powered Neutron Detectors(SPNDs) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. In this paper, Monte Carlo simulation is accomplished to calculate the escape probability of beta particle as a function of their birth position fur the typical geometry of rhodium-based SPNDs. Also, a simple numerical method calculates the initial generation rate of beta particles and the change of generation rate due to rhodium burn-up. Using the simulation and the numerical method, the burn-up profile of rhodium density and the neutron sensitivity are calculated as a function of burn-up time in the reactor. The sensitivity of the SPNDs decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. In addition, for improvement of some properties of rhodium-based SPNDs which are currently used, this paper presents a new material. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long term usage.

  • PDF

MPS eutectic reaction model development for severe accident phenomenon simulation

  • Zhu, Yingzi;Xiong, Jinbiao;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.833-841
    • /
    • 2021
  • During the postulated severe accident of nuclear reactor, eutectic reaction leads to low-temperature melting of fuel cladding and early failure of core structure. In order to model eutectic melting with the moving particle semi-implicit (MPS) method, the eutectic reaction model is developed to simulate the eutectic reaction phenomenon. The coupling of mass diffusion and phase diagram is applied to calculate the eutectic reaction with the uniform temperature. A heat transfer formula is proposed based on the phase diagram to handle the heat release or absorption during the process of eutectic reaction, and it can combine with mass diffusion and phase diagram to describe the eutectic reaction with temperature variation. The heat transfer formula is verified by the one-dimensional melting simulations and the predicted interface position agrees well with the theoretical solution. In order to verify the eutectic reaction models, the eutectic reaction of uranium and iron in two semi-infinite domains is simulated, and the profile of solid thickness decrease over time follows the parabolic law. The modified MPS method is applied to calculate Transient Reactor Test Facility (TREAT) experiment, the penetration rate in the simulations are agreeable with the experiment results. In addition, a hypothetical case based on the TREAT experiment is also conducted to validate the eutectic reaction with temperature variation, the results present continuity with the simulations of TREAT experiment. Thus the improved method is proved to be capable of simulating the eutectic reaction in the severe accident.

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

Apophis Rendezvous Mission: II. Payloads and Operation Scenario

  • Jeong, Minsup;Choi, Young-Jun;Moon, Hong-Kyu;Kim, Myung-Jin;Choi, Jin;Moon, Bongkon;JeongAhn, Youngmin;Lee, Hee-Jae;Baek, Seul-Min;Yang, Hongu;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.44.1-44.1
    • /
    • 2021
  • 한기로 나누어 보면, 흑점의 관측 빈도는 두 기간에서 비슷하지만, 오로라는 냉한기에 집중적으로 관측된다. 특이하게도, 크기가 큰 흑점의 경우는 냉한기보다 온난기에서 관측 빈도가 세 배 이상 높다. 또한, 흑점과 관련된 오로라의 강도를 분석해보면 크기가 큰 흑점은 작은 흑점보다 2~3배 이상 지구영향성이 높다는 것을 알 수 있다.

  • PDF

평로탄화로를 이용한 성형목탄 제조공정에서 생산된 탄화 바이오매스의 특성 (Characteristics of Carbonized Biomass Produced in a Manufacturing Process of Wood Charcoal Briquettes Using an Open Hearth Kiln)

  • JU, Young Min;LEE, Hyung Won;KIM, Ah-ran;JEONG, Hanseob;CHEA, Kwang-Seok;LEE, Jaejung;AHN, Byoung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.181-195
    • /
    • 2020
  • 본 연구는 평로탄화로 이용한 성형목탄 제조과정에서 얻은 탄화된 바이오매스의 특성을 분석하였으며, 기계적 전처리 및 평로탄화로 내 위치에 따른 특성 차이를 비교하고자 하였다. 성형목탄 제조업체에서 채취된 바이오매스 1종과 탄화 바이오매스 5종의 시료를 대상으로 선별(screening) 및 분쇄(grinding)를 통해 분석시료의 입자크기 범위별로 분류한 후, 고정탄소, 회분, 휘발성 화합물, 원소 함량, 발열량을 측정하였다. 실험 결과, 평로탄화로의 위치에 따라서는 중간층의 탄화 바이오매스 발열량이 20.4 MJ/kg으로 가장 높은 연료적 특성을 나타내었다. 선별 입자 크기에 따라서는 100 mesh 이하의 탄화 바이오매스에서 회분함량이 가장 낮았고 발열량, 탄소 함량, 고정탄소 함량은 높았다. 상관관계 분석 결과 회분 함량은 발열량, 휘발성화합물, 고정탄소, 탄소 함량과 모두 음의 상관관계를 나타내어 회분 함량이 연료적 특성에 부정적인 영향을 미치는 것을 확인하였다.