• Title/Summary/Keyword: Particle Morphology

Search Result 772, Processing Time 0.025 seconds

Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells (Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Ki-Wan;Shin, Myoung-Sun;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

Clonazepam Release from Poly(DL-lactide-co-glycolide) Nanoparticles Prepared by Dialysis Method

  • Nah, Jae-Woon;Paek, Yun-Woong;Jeong, Young-Il;Kim, Dong-Woon;Cho, Chong-Su;Kim, Sung-Ho;Kim, Myung-Yul
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.418-422
    • /
    • 1998
  • Aim of this work is to prepare poly(DL-lactide-co-glycolide) (PLGA) nanoparticles by dialysis method without surfactant and to investigate drug loading capacity and drug release. The size of PLGA nanoparticles was 269.9 $\pm$118.7 nm in intensity average and the morphology of PLGA nanoparticies was spherical shape from the observation of SEM and TEM. In the effect of drug loading contents on the particle size distribution, PLGA nanoparticles were monomodal pattern with narrow size distribution in the empty and lower drug loading nanoparticles whereas bi- or trimodal pattern was showed in the higher drug loading ones. Release of clonazepam from PLGA nanoparticles with higher drug loading contents was slower than that with lower loading contents.

  • PDF

Characteristics of Tetanus Toxoid Loaded in Biodegradable Microparticles (파상풍 톡소이드를 함유한 생체분해성 미립구의 특성)

  • 김지윤;김수남;백선영;이명숙;민홍기;홍성화
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.293-299
    • /
    • 2000
  • Biodegradable microspheres made from poly-lactide-co-glycolide polymers have been considered as a new delivery system for single-dose vaccine. Purified tetanus toxoid (TT) was encapsulated in poly-lactide(PLA) and poly-lactide-co-glycolide (PLGA) microparticles using a solvent evaporation method in a multiple emulsion system (water-in oil-in water). The morphology of 77-loaded microparticles was spherical and the suface of them was smooth. The particle size was in a range of 2-10. Protein loading efficiency was 68-97.8%. PLGA (85:15) microparticle showed the highest efficiency. Protein release pattern was influenced by polymer molecular weight and composition. The release rate of PLA(Mw 100,000) microsphere was higher than any other microspheres. In consequence of the hydrolysis of PLGA(50:50) microspheres, environmental pH decreased from 7.4 to 5.0. The PLA, PLGA (75:25) and PLGA (85:15) microshperes showed no significant pH change. The antigenicity or n in microshperes was assayed by indirect sandwich ELISA using equine polyclonal tetanus antitoxin for capture antibody and human polyclonal tetanus antitoxin for primary antibody. The antigenicity of TT in PLA (Mw 100,000), PLGA(50:50, Mw 100,000) and PLGA (75:25, Mw 73,300) after 30 days incubation showed 54, 40.9 and 76.7%, respectively.

  • PDF

Electrospun Calcium Metaphosphate Nanofibers: I. Fabrication

  • Kim, Ye-Na;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.144-147
    • /
    • 2007
  • Calcium metaphosphate (CMP) nanofibers with a diameter of ${\sim}600nm$ were prepared using electrospun CMP/polyvinylpyrrolidone (PVP) fibers through a process of drying for 5 h in air followed by annealing for 1 h at $650^{\circ}C$ in a vacuum. The viscosity of the CMP/PVP precursor containing 0.15 g/ml of PVP was 76 cP. Thermal analysis results revealed that the fibers were crystallized at $569^{\circ}C$. The crystal phase of the as-annealed fiber was determined to be ${\delta}-CMP\;({\delta}-Ca(PO_3)_2)$. However, the morphology of the fibers changed from smooth and uniform (as-spun fibers) to linked-particle characteristics with a tubular form most likely due to the decomposition of the inner PVP matrix. It is expected that this large amount of available surface area has the potential to provide unusually high bioactivity and fast responses in clinical hard tissue applications.

Electroplating on the Lead Frames Fabricated from Domestic Copper Plate (국산동판을 사용한 리드프레임 도금기술에 관한 연구)

  • Jang, Hyeon-Gu;Lee, Dae-Seung
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Improved Micrometric Properties of Pyridostigmine Bromide, a Highly Hygroscopic Drug, through Microenccapsulation (고인습성 약물인 피리도스티그민의 마이크로캅셀화에 의한 분체 특성의 개선)

  • Kim, Dae-Suk;Kim, In-Wha;Chung, Suk-Jae;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • The purpose of this study is to microencapsulate a highly hygroscopic drug, pyridostigmine bromide (PB), with a waterproof wall material, in order to increase the flowability of the drug particles. Polyvinylacetaldiethylaminoacetate (AEA), Eugragit E and Eugragit RS were examined as the wall materials. Microcapsules containing PB were prepared by the evaporation technique in an acetone/liquid paraffin system using aluminum tristearate as a core material, and evaluated for drug encapsulation efficiency, surface morphology, particle size and drug dissolution. The encapsulation of PB in the wall material was almost complete. Among the wall materials examined, AEA exhibited the most excellency in shape, surface texture, flowability, size distribution of microcapsules. Above results suggest that AEA would be a potential wall material for microcapsulation of highly hygroscopic drugs, such as PB. Through microencapsulation with AEA, inconvenience of handling of PB powders encountered in the process of weighing and packing the powders to tableting die or capsule body could be greatly improved.

Preparation and evaluation of GFP-containing microspheres for oral vaccine delivery system (경구용 백신수송체용 GFP 함유 마이크로스피어의 제조 및 평가)

  • Jiang, Ge;Park, Jong-Pil;Kwak, Son-Hyok;Hwang, Sung-Joo;Maeng, Pil-Jae
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • In order to design the oral vaccine delivery system, we prepared the alginate micro spheres containing GFP (green fluorescent protein) as a model drug by spray method. To optimize the preparation conditions of microspheres, we investigated the effects of various parameters including nozzle pressure, nozzle opening angle, and concentrations of sodium alginate and calcium chloride. The prepared microspheres were evaluated by measuring their sizes, loading efficiency, and morphology. The particle size of microspheres was affected by the concentration of sodium alginate and calcium chloride, nozzle pressure, and nozzle opening angle. As the concentration of sodium alginate increased, GFP loading efficiency and particles size of microsphere also increased. However, it was observed to be difficult to spray the sodium alginate solution with concentration greater than 1.5% (w/v), due to high viscosity. The pressure over $3\;kgf/cm^2$ didn't affect the size of particles. As a result, the spraying method enabled us to prepare microspheres for oral vaccine delivery system. In this study, microspheres prepared with 1% (w/v) sodium alginate had greater loading efficiency and better spherical shape.

  • PDF

Surface Properties of the High Porous Carbon Aerogels (고다공성 카본 에어로젤(C-Aerogel) 표면 특성)

  • Kim, Ji-Hye;Lee, Chang-Rae;Jeong, Young-Soo;Kim, Yang-Do;Kim, In-Bae
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.114-120
    • /
    • 2008
  • The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinol-formaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at $1050^{\circ}C$ under inert gas flow was about 10.

Fabrication and Properties of $\alpha$-$Fe_{2}O_{3}$Thin Films Prepared by RF-magnetron sputtering method (RF-magnetron sputtering 법을 이용한 개스 센서용 $\alpha$-$Fe_{2}O_{3}$박막의 제조 및 특성)

  • 최진영;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.499-502
    • /
    • 2000
  • In this study, $\alpha$-Fe$_2$O$_3$thin films were deposited on $Al_2$O$_3$substrate by RF magnetron sputtering method from a $\alpha$-Fe$_2$O$_3$target(99.9%). The sputtering atmosphere was Ar and 80%Ar:20%O$_2$mixture in a total gas pressure of 1~3mTorr. As-deposited $\alpha$-Fe$_2$O$_3$thin films were heated to 300, 400, 500, $600^{\circ}C$ for 5hr in oxygen atmosphere. The structure and the morphology of $\alpha$-Fe$_2$O$_3$thin films were examined by scanning Electron microscopy(SEM) and the crystal structure was analyzed by X-Ray Diffractometer(XRD). The microstructure of the annealed $\alpha$-Fe$_2$O$_3$films exhibits rather gross particle and the grain size was less than 100nm. Since the grain size was very small, the gas sensitivity was expected to be improved.

  • PDF