• Title/Summary/Keyword: Particle Monitoring

Search Result 344, Processing Time 0.025 seconds

Study on Device Monitoring using SNMP (SNMP를 이용한 장비 모니터링에 관한 연구)

  • Park, Mi Jeong;Lee, Dong Hoon;Lee, Jeong Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.561-564
    • /
    • 2014
  • The Rare Isotope Science Project (RISP) at the Institute for Basic Science (IBS) constructs the rare isotope accelerator facility in South Korea. Since the accelerator control system uses various Ethernet-based devices and equipment, it is essential to build a unified Network-based control system. Because of the complexity of the accelerator facility, it will be a challenge to install a device in a proper location where the device could react quickly and exactly with respect to network security. In this report, we will present early study on Simple Network Management Protocol (SNMP) that tests various Ethernet-based devices out on an ideal network configuration in order to find an optimal location for each Ethernet-based device. Moreover, we will discuss future plan to integrate SNMP into Experimental Physics and Industrial Control System (EPICS) that is distributed soft real-time control systems for scientific instruments such as a particle accelerators, telescopes and other large scientific experiments.

  • PDF

Performance Evaluation of Combined Sewer Overflow Treatment using Filtration Pilot Device (파일럿 여과장치를 이용한 합류식하수관 월류수 처리성능 평가)

  • Lee, Jun Ho;Shin, Young Gyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.409-417
    • /
    • 2019
  • In this study, a $480m^3/day$ pilot device was constructed through laboratory experiments based on the Ministry of Environment manual. The purpose of this study was to analyze the characteristics of CSO treatment and backwashing characteristics by applying the pilot device to the field. The purpose of this study was to acquire the basic data necessary for the design and operation management of the real scale filtration type non-point pollution control system. The filtration was conducted while maintaining the linear velocity of 20m/hour. The CSO treatment efficiencies of the pilot devices were 0.4-76.1%(mean 49.0 %), SS 51.4-91.6%(mean 77.8%), COD 22.2-59.4% (mean 38.3%) and TP 14.5-52.6%(mean 38.1%),respectively. The correlation coefficient between SS and the turbidity of influent water was 0.90, higher than that of CSO. To operate the treatment system effectively, the turbidity can be easily measured in real time as the monitoring item is the most appropriate because SS is the main target substance of the non-point source. As a result of analyzing the adsorbent treatment characteristics of PP filter material applied to this pilot device, the average particle diameter range of influent was $4.6-40.1{\mu}m$(mean $21.2{\mu}m$) and the treated water was $0.9-24.5{\mu}m$(mean $6.4{\mu}m$), respectively. Particles of approximately 10m or less are leached out, and so it is necessary to compensate for the raw water containing micro particulate matter.

Investigation on the Leaching Potential of Water-Soluble Metals from Bottom Ashes in Coal-fired Power Plants (화력발전소 바닥재의 수용성 금속이온 용출가능성 조사)

  • Seo, Hyosik;Koh, Dong-Chan;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Bottom ash generated from thermal power plants is mainly disposed in landfills, from which metals may be leached by infiltrating water. To evaluate the effect of metals in leachate on soil and groundwater, we characterized bottom ash generated from burning cokes, bituminous coal, the mixture of bituminous coal and wood pellets, and charcoal powder. The bottom ash of charcoal powder had a relatively large particle size, and its wood texture was well-preserved from SEM observation. The bottom ash of charcoal powder and wood pellets had relatively high K concentration from total element analysis. The eluates of the bottom ash samples had appreciable concentrations of Ca, Al, Fe, SO4, and NO3, but they were not a significant throughout the batch test. Therefore, it is considered that there is low possibility of soil and groundwater contamination due to leaching of metal ions and anions from these bottom ash in landfills. To estimate the trend of various trace elements, long-term monitoring and additional analysis need to be performed while considering the site conditions, because they readily adsorb on soil and aquifer substances.

Detection Limit of a NaI(Tl) Survey Meter to Measure 131I Accumulation in Thyroid Glands of Children after a Nuclear Power Plant Accident

  • Takahiro Kitajima;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.131-143
    • /
    • 2023
  • Background: This study examined the detection limit of thyroid screening monitoring conducted at the time of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 using a Monte Carlo simulation. Materials and Methods: We calculated the detection limit of a NaI(Tl) survey meter to measure 131I accumulation in the thyroid gland of children. Mathematical phantoms of 1- and 5-year-old children were developed in the simulation of the Particle and Heavy Ion Transport code System code. Contamination of the body surface with eight radionuclides found after the FDNPP accident was assumed to have been deposited on the neck and shoulder area. Results and Discussion: The detection limit was calculated as a function of ambient dose rate. In the case of 40 Bq/cm2 contamination on the body surface of the neck, the present simulations showed that residual thyroid radioactivity corresponding to thyroid dose of 100 mSv can be detected within 21 days after intake at the ambient dose rate of 0.2 µSv/hr and within 11 days in the case of 2.0 µSv/hr. When a time constant of 10 seconds was used at the dose rate of 0.2 µSv/hr, the estimated survey meter output error was 5%. Evaluation of the effect of individual differences in the location of the thyroid gland confirmed that the measured value would decrease by approximately 6% for a height difference of ±1 cm and increase by approximately 65% for a depth of 1 cm. Conclusion: In the event of a nuclear disaster, simple measurements carried out using a NaI(Tl) scintillation survey meter remain effective for assessing 131I intake. However, it should be noted that the presence of short-half-life radioactive materials on the body surface affects the detection limit.

Study on Temporal Decay Characteristics of Naturally Occurring Radionuclides in Groudwater in Two Mica Granite Area (복운모화강암지역 지하수 중 자연방사성 물질의 경시적 붕괴특성 연구)

  • Kim, Moon Su;Kim, Tae Seung;Kim, Hyun Koo;Kim, Dong Su;Jeong, Do Hwan;Ju, Byoung Kyu;Hong, Jung Ki;Kim, Hye Jin;Park, Sun Hwa;Jeong, Chan Ho;Cho, Byong Wook;Han, Jin Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.19-31
    • /
    • 2013
  • To figure out the decay characteristics of naturally occurring radionuclides, eight sampled groundwaters from a monitoring borehole having high levels of uranium and radon concentrations in a two mica granitic area have analyzed by liquid scintillation counters (LSC) for over 1 year. In December 2011, three groundwater samples (DJ1, DJ2, DJ3) were obtained from each aquifer system located at -20 m, -40 m, -60 m of the monitoring borehole below the ground surface, respectively. Five samples (DJ4, DJ5, DJ6, DJ7, DJ8) were additionally gained from each aquifer positioned -20 m, -40 m, -60 m, -100 m, -105 m of the borehole in February 2012, respectively. Temporal variation characteristics of uranium and radon concentrations have showed over maximum 2.1 times and 1.4 times fluctuations of the values in the same sampling intervals over time, respectively. The intervals of -40 m and -105 m in the borehole have the highest values of uranium and radon concentrations, respectively. This may imply that the concentrations of naturally occurring radionuclides such as uranium and radon in groundwater have been changed over time and indicate that the qualities of groundwaters from the aquifers developed at each interval in the borehole are different each other. This discrepancy, moreover, could be caused by behaviour differences between uranium which is in ionic status having a half life of 4.6 billion years and is transported along with the flowing groundwater, and radon which is in gaseous status having a 3.82 day's half life in the aquifer systems. Physicochemical characteristics of groundwaters from the aquifer systems could be identified by the results of the on-situ measuring items such as pH and Eh, and the major ionic contents. The CPM values of eight groundwater samples analysed by LSC over one year have shown not to follow the theoretical decay curve of the radon. The CPM values of the samples have ranged from 2 to 7.5 after it had passed two months when the theoretical CPM values of the radon started zero since the initial analysis. Alpha and beta particle spectrums have shown the peaks of radium-226, however they have not revealed any peaks of radon and it's daughter products such as polonium-218 and 214, bismuth-214 for the late stage of the analysis. This implies that the groundwater from the borehole may contain radium-226 having a half life of 1,600 years which decays continuously.

The Characteristics of Black Carbon of Seoul (서울의 블랙카본 특성 연구)

  • Park, Jongsung;Song, Inho;Kim, Hyunwoong;Lim, Hyungbae;Park, Seungmyung;Shin, Suna;Shin, Hyejoung;Lee, Sangbo;Kim, Jeongho
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.113-128
    • /
    • 2019
  • The concentration and coating thickness of black carbon (BC) were measured along with fine dust in the fall of 2018, at the Seoul Metropolitan Area Intensive Monitoring Station (SIMS). In fall, the concentration of $PM_{10}$ and $PM_{2.5}$ was $23{\pm}12.6{\mu}g/m^3$ and $12{\pm}5.8{\mu}g/m^3$, respectively, lower than that in other seasons. The BC level, measured using an Aethalometer, was $0.73{\pm}0.43{\mu}g/m^3$, while the levels of elemental carbon (EC) and refractory-BC (rBC), measured by semi-continuous carbon analyzer (SOCEC) and single particle soot photometer (SP2), were $0.34{\pm}0.18{\mu}g/m^3$ and $0.32{\pm}0.18{\mu}g/m^3$, respectively. As such, the concentration level differed according to the measurement method, but its time-series distribution and diurnal variation showed the same trends. The BC concentration at SIMS was primarily affected by automobiles with higher levels of BC during morning and evening commuting times due to increased traffic congestion. rBC, measured by SP2, had a peak concentration and coating thickness of 84 nm and 43 nm, respectively. Notably, the coating thickness had an inverse relationship with particle size.

Development of Three-Dimensional Trajectory Model for Detecting Source Region of the Radioactive Materials Released into the Atmosphere (대기 누출 방사성물질 선원 위치 추적을 위한 3차원 궤적모델 개발)

  • Suh, Kyung-Suk;Park, Kihyun;Min, Byung-Il;Kim, Sora;Yang, Byung-Mo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Background: It is necessary to consider the overall countermeasure for analysis of nuclear activities according to the increase of the nuclear facilities like nuclear power and reprocessing plants in the neighboring countries including China, Taiwan, North Korea, Japan and South Korea. South Korea and comprehensive nuclear-test-ban treaty organization (CTBTO) are now operating the monitoring instruments to detect radionuclides released into the air. It is important to estimate the origin of radionuclides measured using the detection technology as well as the monitoring analysis in aspects of investigation and security of the nuclear activities in neighboring countries. Materials and methods: A three-dimensional forward/backward trajectory model has been developed to estimate the origin of radionuclides for a covert nuclear activity. The developed trajectory model was composed of forward and backward modules to track the particle positions using finite difference method. Results and discussion: A three-dimensional trajectory model was validated using the measured data at Chernobyl accident. The calculated results showed a good agreement by using the high concentration measurements and the locations where was near a release point. The three-dimensional trajectory model had some uncertainty according to the release time, release height and time interval of the trajectory at each release points. An atmospheric dispersion model called long-range accident dose assessment system (LADAS), based on the fields of regards (FOR) technique, was applied to reduce the uncertainties of the trajectory model and to improve the detective technology for estimating the radioisotopes emission area. Conclusion: The detective technology developed in this study can evaluate in release area and origin for covert nuclear activities based on measured radioisotopes at monitoring stations, and it might play critical tool to improve the ability of the nuclear safety field.

Chemical Characteristics and Particle Size Distribution of PM10 in Iron and Steel Industrial Complex (포항철강공단 미세먼지(PM10)의 입경분포 및 화학적 특성)

  • Jung, Jong-Hyeon;Lee, Hyung-Don;Jeon, Soo-Bin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5601-5609
    • /
    • 2012
  • The fine particulate matter($PM_{10}$) concentrations and contents were measured to check the health and environment influential factors in Pohang Iron and Steel Industrial Complex and its vicinities. In addition, the $PM_{10}$ distribution for each year and season was surveyed using the regional air quality monitoring stations. The measuring on the $PM_{10}$ inside the industrial complex showed $61.3{\pm}12.1{\mu}g/m^3$ for average concentration of $PM_{10}$ which was measured by Dongil Industry and $44.3{\pm}8.1{\mu}g/m^3$ measured by steel manufacturing industry complex management office. Both of them satisfied the environmental air quality standard. The percentage of $SO_4{^2}$, $NO_3{^-}$, $NH_4{^+}$ which are the secondary ions created out of the $PM_{10}$ in Dongil Industry and steel manufacturing industry complex management office was checked and it was revealed that the percentage of ${SO_4}^{2-}$ was high and it is considered that the pollution source related with the sulfides exist at the industrial complex. They were in order of ${SO_4}^{2-}$ > $Cl^-$ > $NO_3{^-}$ > $F^-$ > $NH_4{^+}$ in Dongil Industry and ${SO_4}^{2-}$ > $Cl^-$ > $NO_3{^-}$ > $NH_4{^+}$ > $F^-$ in steel manufacturing industry complex management office.

Runoff Characteristics and Relationship between Non-point Source Pollutants from Road (국도에서 발생하는 비점오염물질 유출특성 및 상관성)

  • Son, Hyun-Geun;Lee, So-Young;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.59-64
    • /
    • 2008
  • The urban is possessing of various landuses such as commercial, industrial, residential and official areas. All of these landuses is including the paved areas that are roads and parking lots. The NPS (nonpoint sources) pollutants are generally originated from pavement areas in urban by human activities. Especially the roads are stormwater intensive landuses because of high vehicle activities and high imperviousness. The main NPS pollutants from roads are particulates and metals from vehicles and pavements. The Korea MOE (Ministry of Environment) is developing the NPS control program to reduce the NPS pollutants from the basins. However, it is not easy to control the NPS because it has high uncertainty by characteristics of rainfalls and watersheds. Therefore, this research was conducted on characterizing the runoff and providing mean EMC from roads. The monitoring were performed for total 16 rainfall events from a road in Youngin City since 2006. The results show that the TSS is highly correlated with other pollutant parameters. The statistical regression models using TSS EMC have been developed to easily determine the EMC of other pollutant parameters.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF