• Title/Summary/Keyword: Particle Mixing

Search Result 666, Processing Time 0.029 seconds

Velocity Measurement around Ramp Injector in Supersonic Flow

  • Koike, Shunsuke;Suzuki, Kentaro;Hirota, Mitsutomo;Takita, Kenichi;Masuya, Goro;Matsumoto, Masashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.117-124
    • /
    • 2004
  • The mixing enhancement is one of the most important problems for the development of scramjet engines. The influence of the streamwise vortices produced by a ramp in a unheated supersonic flow on the mixing of twin jets injected from its base was experimentally investigated. Nominal Mach number of the main airstream and of the twin jets at the nozzle exits were 2.35 and 2.0, respectively. Three dimensional velocity distributions near the ramp with and without injection were measured by Particle Image Velocimetry (PIV). A pair of counter rotating streamwise vortices could be seen behind the injector without injection. On the other hand, two pairs of streamwise vortices could be seen with injection. The outer one had the same direction as the vortex pair produced by the ramp, but they were stronger than those produced by the ramp. The inner ones had the opposite directions to the outer ones. It is considered that these vortices enhance the mixing near the injector.

  • PDF

A Development of a Transient Hydrogen Generation Model for Metal-Water Interactions

  • Lee, Jin-Yong;Park, Goon-Cherl;Lee, Byung-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.549-558
    • /
    • 2000
  • A transient model for hydrogen generation in molten metal-water interactions was developed with separate models for two stages of coarse mixing and stratification. The model selves the mechanistic equations (heat and mass transfer correlation, heat conduction equation and the concentration diffusion equation) of each stage with non-zero boundary conditions. Using this model, numerical simulations were performed for single droplet experiments in the Argonne National Laboratory tests and for FITS tests that simulated dynamic fragmentation and stratification. The calculation results of hydrogen generation showed better agreement to the experiment data than those of previous works. It was found from the analyses that the steam concentration to be reached at the reaction front might be the main constraint to the extent of the metal droplet oxidized. Also, the hydrogen generation rate in the coarse mixing stage was the higher than that in the stratification stage. The particle size was the most important factor in the coarse mixing stage to predict the amount of hydrogen generation.

  • PDF

Effect of Particle Loading Ratio on Fluid Characteristics and Particle Distribution in Particle-laden Coaxial Jet (입자부상 동축 분사기에서 입자로딩비가 유동 특성과 입자분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.9-19
    • /
    • 2015
  • Experimental research on characteristics of particle-laden jet by using a coaxial injector was conducted in order to design fuel and oxidizer injectors of the supercavitation underwater vehicle. $1{\mu}m$ and $42{\mu}m$ particles was simultaneously injected to obtain particle and fluid velocity. Small particles($1{\mu}m$) and large particles represent fluid and fuel characteristics respectively. Small particles, which was processed using PIV algorithms, and one for the large particles processed using PTV algorithms. Fluid phase axial velocity increases according to particle loading ratio increases, and particles are located at the outside of the high vorticity region in a mixing layer of a coaxial injector.

Chemical Transformation of Individual Asian Dust Particles Estimated by the Novel Double Detector System of Micro-PIXE

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 2010
  • By the application of novel double detector system of micro-PIXE that can detect light elements (Z<14), we made an attempt to provide a thorough discussion on the aging processes of Asian dust (hereafter called "AD") particle by reaction with sea-slat. The elemental spectra and maps obtained from the microbeam radiation of micro-PIXE to individual AD particles were useful for fractionating AD particles into both internally and externally mixed particles. A spatial distribution of elements in a minute domain of single particle obtained by scanning the microbeam irradiation enabled us not only to estimate the chemical mixing state of individual AD particles but also to presume their aging processes in both ambient air and cloud. By calculating the normalized micro-PIXE net count of elements, it was possible to classify individual AD particles into three distinct groups (i.e., (1) Aging type 1: AD particle coated by the gaseous Cl evaporated by the reaction between artificial acids and sea salt; (2) Aging type 2: AD particle mixed with sea salt but no additional reaction with artificial acids; and (3) Non-aged type) A relatively high transformation rate (63.3-75.9%) was shown in large particles (greater than $5.1\;{\mu}m$ in diameter).

Amorphous Ultrafine Particle Preparation for Improvement of Bioabailability of Insolube Drugs: Effect of Co-Grinding of UDCA with SLS (난용성 의약품의 생체이용률 증진을 위한 무정형 초미립자의 조제 : UDCA와 SLS의 혼합분쇄 효과)

  • 정한영;곽성신;김현일;최우식
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.102-107
    • /
    • 2002
  • The particle size of medicinal materials is an important physical property which affects the pharmaceutical behaviors such as dissolution, chemical stability, compressibility and bioavailability of solid dosage forms. The size reduction of raw pharmaceutical powder is needed to formulize insoluble drugs or slightly soluble drugs and to improve the pharmaceutical properties such as the solubility, the pharmaceutical mixing and the dispersion. The objective of the present study is to evaluate the grinding characteristics of ursodeoxycholic acid(UDCA) as a model of insoluble drugs. The effects of the grinding time and the amount of additive on particle size distribution of ground UDCA were investigated. Grinding of insoluble drug, UDCA and a series of dry co-grinding experiments of UDCA with sodium lauryl sulfate(SLS) as an additive were carried out using a planetary ball mill. It was measured that the median diameter and the particle size distribution of ground products with grinding UDCA and additive SLS by Mastersizer. As a result of co-grinding of UDCA and SLS, the particle size of co-grinding products was decreased more than single grinding one. However, it was observed that co-grinding products were reaggregated to larger particles after 120 min.

Image Analysis of Surimi Sol and Gel in Composite System

  • Yoo, Byoung-Seung;Lee, Chong M.
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.292-294
    • /
    • 1998
  • Surimi sol and gel were prepared by mixing egg albumin, starch, oil and carrageenan, which are used as representative ingredients in the surimi composite, at different ratio. Structural properties in surimi composite were investigated by examining the phase changes and dispersion pattern (average particle size, size range and the averge number of particle) of the particulate ingredients in sol and gel with an image analyzer. A staining technique of the specimen containing egg albumin in surimi gel was developed by adjusting pH of a toluidine staining solution. Image analysis revealed that size and density of ingredient particles were function of the level and dispersion of ingredients except of starch-incorporated surimi gel which showed maximum particle size at 6%.

  • PDF

Measurement technique for particle and soot of diesel injection by using a visualization method (가시화법을 이용한 디젤 인젝터의 액적과 soot의 측정 기술)

  • Chung, J.W.;Park, H.J.;Lee, K.H.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.22-28
    • /
    • 2001
  • Recently, many researches have been performed to improve the combustion and emission in a D.I.Diesel engine. Especially reduction of the soot formation in the combustion chamber is the essential to acquire the improvement of the emission performance. This emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Therefore, the optical measurement technique such as LII and LIS were established in order to visualize the distribution of the soot and analyze the particle including spray in the combustion chamber. In this study, we developed the algorithm for calculating relative diameter and density of particle and applied this method to measure stimultaneously the distribution of soot and spray in a D.I. diesel engine. From this experiment we found that the soot is existed in the rich region of spray and generated caused by incapable air fuel mixture.

  • PDF

Measurement of Insoluble Mineral Particles in a Saturated Atmosphere

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.44-53
    • /
    • 2008
  • This study was undertaken to measure the properties of individual mineral particles in an artificially saturated atmosphere at a vertical extinct mine with 430 m height. By synchrotron radiation X-ray fluorescence (SR-XRF) microprobe analysis, it was possible to determine the elemental composition of residual insoluble particles on individual cloud droplet replicas formed on the Collodion film. The XRF visualized elemental maps enabled us not only to presume the chemical mixing state of particles retained in cloud droplet, but also to estimate their source. Details about the individual mineral particles captured by artificial cloud droplets should be helpful to understand about the removal characteristics of dust particles such as interaction with clouds. Nearly all individual particles captured in cloud droplets are strongly enriched in Fe. Mass of Fe is ranged between 41 fg and 360 fg with average 112 fg. There is a good agreement between single particle analysis by SR-XRF and bulk particle analysis by PIXE.

The Effects of Extrusion Cooking and Milling on the Instant Properties of Wheat Powders

  • Tanhehco, E.J.;Ng, P.K.W.
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.758-765
    • /
    • 2005
  • Instant powders that only require mixing with water prior to consumption can be produced by extrusion for use in products such as instant beverages. Both extrusion processing conditions and particle size of powder are important to end-product characteristics. In this study, a twin-screw extruder was used under various processing conditions (feed moisture, barrel temperature, and screw speed) to produce extrudates from soft wheat flour, which were ground to powders with particle size ranges of less than 93, 93-145, and $145-249\;{\mu}m$. Effects of adding soy lecithin to wheat flour before extrusion were also investigated. Water absorption, solubility, suspension viscosity, and dispersibility of wheat powders were related to specific. mechanical energy measured during extrusion. Powder particle size was important to instant properties, especially ease of dispersal in water and stability to sedimentation. Addition of lecithin significantly improved dispersibility of powders.