• Title/Summary/Keyword: Particle Image Processing

Search Result 185, Processing Time 0.03 seconds

A Study on the Optimum Image Capture of Wear Particle for Condition Monitoring of Machine (기계의 상태 모니터링을 위한 최적의 마멸분 영상 획득 방법에 관한 연구)

  • Cho, Yon-Sang;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.301-305
    • /
    • 2007
  • The wear particle analysis has been known as very effective method to foreknow and decide a moving situation and a damage of machine parts by using the digital computer image processing. But it was not laid down and trusted to calculate shape parameters of wear particle and wear volume. In order to apply image processing method in the foreknowledge and decision of lubricated condition, it needs to verify the reliability of the calculated data by the image processing and to lay down the number of images and the amount of wear particle in one image. In this study, the lubricated friction experiment was carried out in order to establish the optimum image capture with the SM45C specimen under experiment condition. The wear particle data were calculated differently according to the number of image and the amount of wear particle in one image.

A Study on the Improvement of PIV Performance (PIV의 성능개선에 관한 연구)

  • 이영호;김춘식;최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.34-42
    • /
    • 1994
  • The present study is aimed to improve the PIV performance by suggesting a two-frame particle identification technique and by introducing estimation method of wall pressure distribution from the velocity data. Adopted image processing system consists of one commercial image board slit into a personal computer, 2-D sheet light generator, flow picture recording apparatus and related particle identification software. A revised particle tracking method essential to PIV performance is obtained by particle centroid correlation pairing (CCP) and its effectiveness is ascertained by comparison with multi-frame identification.

  • PDF

Simulation of the Digital Image Processing Algorithm for the Coating Thickness Automatic Measurement of the TRISO-coated Fuel Particle

  • Kim, Woong-Ki;Lee, Young-Woo;Ra, Sung-Woong
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.36-40
    • /
    • 2005
  • TRISO (Tri-Isotropic)-coated fuel particle is widely applied due to its higher stability at high temperature and its efficient retention capability for fission products in the HTGR (high temperature gas-cooled reactor), one of the highly efficient Generation IV reactors. The typical ball-type TRISO-coated fuel particle with a diameter of about 1 mm is composed of a nuclear fuel particle as a kernel and of outer coating layers. The coating layers consist of a buffer PyC, inner PyC, SiC, and outer PyC layer. In this study, a digital image processing algorithm is proposed to automatically measure the thickness of the coating layers. An FBP (filtered backprojection) algorithm was applied to reconstruct the CT image using virtual X-ray radiographic images for a simulated TRISO-coated fuel particle. The automatic measurement algorithm was developed to measure the coating thickness for the reconstructed image with noises. The boundary lines were automatically detected, then the coating thickness was circularly by the algorithm. The simulation result showed that the measurement error rate was less than 1.4%.

Improvement of Image Processing Algorithm for Particle Size Measurement Using Hough Transform (Hough 변환을 이용한 입경 측정을 위한 영상처리 알고리즘의 개선)

  • Kim, Yu-Dong;Lee, Sang-Yong
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2001
  • Previous studies on image processing techniques for panicle size measurement usually have focused on a single panicle or weakly overlapped particles. In the present work, the image processing algorithm for particle size measurement has been improved to process heavily-overlapped spherical-particle images. The algorithm consists of two steps; detection of boundaries which separate the images of the overlapped panicles from the background and the panicle identification process. For the first step, Sobel operator (using gray-level gradient) and the thinning process was adopted, and compared with the gray-level thresholding method that has been widely adopted. In the second, Hough transform was used. Hough transform is the detection algorithm of parametric curves such as straight lines or circles which can be described by several parameters. To reduce the measurement error, the process of finding the true center was added. The improved algorithm was tested by processing an image frame which contains heavily overlapped spherical panicles. The results showed that both the performances of detecting the overlapped images and separating the panicle from them were improved.

  • PDF

A Study on the Interaction between Particles and Surrounding Fluid (입자와 주위유체와의 상호작용에 관한 연구)

  • ;T.Kurihara;H. Monji;G. Matsui
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.108-115
    • /
    • 2002
  • The fundamental mechanism of a dispersed two-phase flow was investigated. Experiments were carried out to understand how the particles behaves under the influence of the particle size, shape, metamorphoses (bubble) and buoyancy of a single particle which is ascending from the standstill water. Two CCD cameras were employed for image processing of the behavior of the particles and the surrounding flow, which was interpreted with the technique of correlation PIV (Particle Image Velocimetry) and PTV (Particle Tracking Veloci- metry), respectively The experimental results showed that the large density difference bet- ween a particle and water caused high relative velocity and induced zigzag motion of the particle. Furthermore, the turbulence intensity of a bubble was about twice the case of the spherical solid particle of similar diameter.

Spraying Status Evaluation of the Electro-static Sprayer Using Computer Image Processing (컴퓨터 영상처리를 이용한 정전분무기의 분무상태 평가)

  • Hwang, H.;Cho, S. I.;Cho, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.391-398
    • /
    • 1999
  • The spraying status of the electrostatic sprayer was evaluated by processing surface spraying images of the natural leaves. Water solution of the fluorescent material was used as a spray medium. The image of the lights reflected by fluorescent droplets was captured under UV light using a color CCD camera. Coverage rate, particle density, and the size distribution of particles were analyzed from the surface images of leaves under various spraying conditions such as spraying nozzle angle and object distance. Spraying characteristics of the electrostatic sprayer was evaluated in comparison with the conventional one. In a case of electrostatic sprayer, coverage rate and particle density increased by the average of 1.57times and 1.01times respectively under various nozzle angles and distances. The number of particle under the diameter of 50 ${\mu}{\textrm}{m}$ also increased significantly.

  • PDF

Development of Image Processing Algorithm Using Boundary Curvature Information in Particle Size Measurement (영상 처리 기법에서 곡률을 이용한 입경 측정 알고리듬의 개발)

  • 김유동;이상용;김상수
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1445-1450
    • /
    • 2002
  • In the present study, a new pattern recognition algorithm was proposed to size spray particles using the boundary curvature information. Conceptually, this algorithm has an advantage over the others because it can identify the particle size and shape simultaneously, and also can separate the overlapped particles more effectively. Curvature of a boundary was obtained from the change of the slopes of two neighboring segments at the corresponding part. The algorithm developed in this study was tested by using an artificially prepared image of a group of spherical particles which were either isolated or overlapped. Particle sizes obtained from the measured curvatures agreed well with the true values. By detecting abrupt changes of the curvature along the image boundary, the element particles could be separated out from their overlapped images successfully.

Research of liquid-solid two phase flow in centrifugal pump with crystallization phenomenon

  • Liu, Dong;Wang, Ya-Yun;Wang, Ying-Ze;Wang, Chun-Lin;Yang, Min-Guan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • Particle Image Velocimetry combined with developed image processing method is adopted to study the liquid-solid two phase flow in the centrifugal pump impeller with crystallization phenomenon. The tracer particle is used to follow the liquid phase, which has the diameter between 8 to $12{\mu}m$. The crystal particle precipitates from the sodium sulfate solution does change the wavelength of the laser, and which has great laser scattering characteristics. The diameter of the crystal particle is larger than $20{\mu}m$. Through calculating the diameter of the particles in the image, the tracer particle and the crystal particle can be distinguished. By analyzing the experimental result, the following conclusion has been obtained. During the delay period, there is not any crystal particle and the pump performance has not been changed. As the crystallization process begins, the crystal nuclei appears from the supersaturation solution and grows larger with temperature decreasing, which has the tendency of moving towards the pressure side. The characteristics of liquid-solid two phase flow with crystallization phenomenon in the pump are obtained according to analysis of experimental results, and some guiding advices are presented to mitigate the crystallization phenomenon in pump impeller.

Hazy Particle Map-based Automated Fog Removal Method with Haziness Degree Evaluator Applied (Haziness Degree Evaluator를 적용한 Hazy Particle Map 기반 자동화 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1266-1272
    • /
    • 2022
  • With the recent development of computer vision technology, image processing-based mechanical devices are being developed to realize autonomous driving. The camera-taken images of image processing-based machines are invisible due to scattering and absorption of light in foggy conditions. This lowers the object recognition rate and causes malfunction. The safety of the technology is very important because the malfunction of autonomous driving leads to human casualties. In order to increase the stability of the technology, it is necessary to apply an efficient haze removal algorithm to the camera. In the conventional haze removal method, since the haze removal operation is performed regardless of the haze concentration of the input image, excessive haze is removed and the quality of the resulting image is deteriorated. In this paper, we propose an automatic haze removal method that removes haze according to the haze density of the input image by applying Ngo's Haziness Degree Evaluator (HDE) to Kim's haze removal algorithm using Hazy Particle Map. The proposed haze removal method removes the haze according to the haze concentration of the input image, thereby preventing the quality degradation of the input image that does not require haze removal and solving the problem of excessive haze removal. The superiority of the proposed haze removal method is verified through qualitative and quantitative evaluation.

Flow Field Analysis around Multi-Cylinders Using Particle Image Velocimetry (PIV를 이용한 다수원주 주위 유동장 해석)

  • 전완수;박준수;권순홍;하동대;최장운;이만형
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.89-95
    • /
    • 1996
  • The flow field around four cylinders for various angles was investigated utilizing particle image velocimetry(PIV) technique. Flow field was recorded by video camera first. Then application of PIV technique was done to the flow field. The results turned out to be useful to analyze complex flow field around multiple cylinders.

  • PDF