• 제목/요약/키워드: Particle Holdup

검색결과 15건 처리시간 0.022초

기포탑 반응기에서 조작변수가 meta 붕산 생성반응 전환율에 미치는 영향 (Effects of Operating Variables on the Conversion of Meta Boric Acid Formation in a Bubble Column Reactor)

  • 조수행;도재범;강용
    • 공업화학
    • /
    • 제7권3호
    • /
    • pp.573-579
    • /
    • 1996
  • 공업적 기포탑 반응기의 설계, scale-up, 조절, 개발 및 운전에 매우 긴요한 기초자료들을 얻기 위하여 실험 실적 규모의 기포탑 반응기에서 각 실험변수들이 ortho 붕산으로부터 meta 붕산의 생성 반응전환율에 미치는 영향을 연구하였다. 반응시간 및 압력, 반응물의 입자크기 및 기체 유속 등을 실험변수로 선택하였으며, 이들 실험변수들이 기포탑 반응기내의 기체 체류량에 미치는 영향들을 반응의 전환율과 연계하여 또한 검토하였다. 연구의 결과, 다음과 같은 최적 반응조건을 얻을 수 있었다 : 반응시간 ; 35~40(분), 반응압력 ; 92~95(kPa), 반응입자의 크기 ; $0.6{\times}10^{-3}(m)$ 이하, 기체 유속 ; 0.07~0.08(m/s).

  • PDF

CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석 (CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal)

  • 임종훈;배건;신재호;이동호;한주희;이동현
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.678-686
    • /
    • 2016
  • 본 연구에서는 내경 0.3 m, 높이 2.4 m인 기-고 유동층 반응기 내에서 수직 방향의 내부 구조물과 shroud 노즐 분산판이 기포 흐름에 미치는 영향을 CPFD (Computational Particle-Fluid Dynamics)를 이용하여 모델링을 수행하였다. 층 물질로는 Metal-grade 실리콘 입자(MG-Si)가 사용되었으며 $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$, $U_{mf}=0.02m/s$이다. 전체 층물질의 양은 75 kg이며 정적층(static bed) 높이는 0.8 m이다. 수직 내부 구조물이 기포 상승속도에 미치는 영향을 파악하였다. 내부 구조물이 분산판으로부터 0.45 m 높이에 설치되었을 때 기포의 분쇄가 일어났다. 유동층의 압력강하 및 수직 고체체류량 분포는 내부 구조물의 영향을 크게 받지 않는 것으로 나타났다. 하지만 내부 구조물이 제트에 너무 가까운 경우 기포가 분쇄되지 않고 내부 구조물을 우회하여 상승하였으며 내부 구조물이 없는 경우나 0.45 m 높이에 설치된 경우에 비해 더 빠른 속도로 상승하였다.

유동층 반응기 희박상 내 탄소나노튜브 응집체의 크기 및 형상 측정 (Measurement of Carbon Nanotube Agglomerates Size and Shape in Dilute Phase of a Fluidized Bed)

  • 김성원
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.646-651
    • /
    • 2017
  • CNT 유동층 반응기(내경 0.15 m, 높이 2.6 m) 희박상 내 CNT 입자(평균입도 $291{\mu}m$, 벌크밀도 $72.9kg/m^3$)의 거동을 확인하기 위해 레이저 슬릿광 형상 측정법을 이용하여, CNT 응집체의 크기 및 형태를 측정하였다. 기포유동층 조건에서 CNT 반응기 내 축방향 고체체류량 분포는 하부 농후상과 상부 희박상을 갖는 S자 형태를 보였다. 기체 유속이 증가할수록 비산되는 CNT 응집체의 Heywood 직경과 Feret 직경이 증가하였고, 응집체 내 CNT 입자수가 증가하였다. 또한, 기체의 유속이 증가할수록 CNT 응집체의 종횡비는 증가하고, 원형도는 감소하였다. CNT 응집체의 원마도와 견고도는 기체의 유속이 증가할수록 감소하였다. 응집체의 형상 분석 정보에 기반한 희박상 내 응집체 형성 원인을 제안하였다.

삼상 역 유동층의 수력학, 열전달 및 물질전달 특성 (Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds)

  • 강용;이경일;신익상;손성모;김상돈;정헌
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.451-464
    • /
    • 2008
  • 삼상 역 유동층은 유동하거나 부유하는 입자의 크기가 매우 작은 경우나 유동입자의 밀도가 액체보다 작은 담체나 접촉매체 또는 촉매전달물질인 경우에 생물반응기, 발효공정, 폐수처리공정, 흡착, 흡수공정 등에 매우 효과적으로 사용될 수 있어서 그 적용성은 날로 증대되고 있다. 그러나, 삼상 역 유동층에 대해서는 많은 연구가 진행되지 않아 왔으며 수력학적 특성에 대한 연구조차도 미흡한 실정이다. 삼상 역 유동층을 이용한 많은 종류의 반응기와 공정들의 운전과 설계 그리고 scale-up을 위해서는 삼상 역 유동층에서 수력학적 특성과 열전달과 물질전달과 같은 이동현상에 대한 정보는 필수적이라는 것은 자명한 사실이다. 따라서, 본 총설에서는 삼상 역 유동층에 대한 정보들을 공학적 측면에서 요약하고 재정리하여서 이 분야의 현장에서 필요한 지식들을 제안하고자 하였다. 본 논문은 수력학적 특성, 열전달 특성 그리고 물질전달 특성의 세 부분으로 이루어져있다. 즉, 수력학적 특성 부분에서는 운전변수가 상 체류량, 기포의 특성 그리고 유동입자의 분산에 미치는 영향을 검토하였으며, 열전달 특성 부분에서는 삼상 역 유동층에서의 운전변수가 열전달 계수에 미치는 영향을 고찰하였고, 열전달 모델에 대한 정리를 하였으며, 물질전달 특성 부분에서는 운전변수가 연속액상의 축방향 분산계수 및 액상 부피물질전달계수에 미치는 영향에 대해 고찰하였다. 또한, 각 절에서 유동입자의 최소유동화속도, 상 체류량, 기포특성, 유동입자의 요동빈도수 및 유동입자의 분산 등과 같은 수력학적 특성과 열전달 계수 그리고 연속액상의 축방향 확산계수와 물질전달계수 등을 예측할 수 있는 상관식들을 제안하였다. 본 총설의 마지막 절에서는 삼상 역 유동층의 공업적 응용을 위해 앞으로 더 연구해야하는 내용에 대해 제안을 하였다.

다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회 (Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds)

  • 흥윤석;강경수;박주식;이동현
    • 청정기술
    • /
    • 제17권1호
    • /
    • pp.62-68
    • /
    • 2011
  • 다단 환원형 유동층 반응기(상승관: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)에서의 수력학적 특성을 연구하였다. 층물질로는 glass beads($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Galdart B)를 사용하였다. Batch 상태에서 고체흐름량을 측정하기 위하여 전자저울을 사용하여 누적된 무게로 계산하였다. 연속공정에서는 고체순환량를 측정하기 위하여 고체가 순환상태에서 사이클론 하단의 3-way 밸브를 이용하여 일정시간에 누적된 무게로 계산하였다. 또한 정상상태에서 가열된 입자가 열전대를 통과하는 시간을 측정하여 고체순환량을 계산하였다. 고체의 흐름량은 주입 기체의 유속($1.2{\sim}2.6U_{mf}$)과 층높이(z, 0.24~0.68 m)가 증가함에 따라 2.2 에서 23.4 kg/s로 증가하였다. 이때 고체체류시간은 440에서 1,438 s까지 변화하였다. 상승관내의 고체 체류량을 확인하기 위하여 각 구간에서의 압력강하를 측정하여 고체 체류량을 계산하였다. 본 연구에서 얻어진 고체체류량 분포는 end effect를 갖는 exponential decay model 의 형태로 나타났다. 상단 유동층에서 중단 유동층으로의 기체 우회을 확인하기 위하여 상단 유동층으로 주입되는 공기에 일정 조성의 $CO_2$ 추적기체를 주입한 후, 기체분석기를 이용하여 중단 유동층의 배출기체중 $CO_2$가 우회되는 양을 측정하였다. 측정된 기체우회(gas bypassing)양은 2.6% 미만으로 그 영향이 크지 않는 것으로 판단하였다.