• 제목/요약/키워드: Particle Counter

검색결과 211건 처리시간 0.032초

Differential Mobility Analyzer(DMA)와 Condensation Nuclei Counter(CNC)를 이용한 입자크기 분포 측정에서 샘플링 튜브와 CNC에서의 혼합 효과가 입자 크기 분포 측정에 미치는 영향에 관한 연구 (Study on the Contribution of Mixing Effects in Sampling Tube and Condensation Nuclei Counter(CNC) to the measurement of size distribution obtained using Differential Mobility Analyzer and CNC)

  • 이윤수;안강호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.104-109
    • /
    • 2001
  • The time to measure the size distribution using Condensation Nuclei Counter(CNC) and Differential Mobility Analyzer(DMA) can be shortened by classifying particles ramping the DMA voltage exponentially and continuously. In measurement, particles sampled at different time are mixed together going through sampling tube and CNC. Because the size distribution is inversed by using detector responses to sampling time intervals in this accelerated method, the mixing effects give inversion errors to the size distribution. The mixing effects can be considered by appling the transfer function with mixing effects to the data inversion. The inversion considering this effects gives birth to the size distribution shifted to the opposite direction of the size scanning.

  • PDF

현미경법, 표준체법, 전기저항법, 공기역학법에 의한 쌀가루의 입도분포의 비교 (Comparison of Size Distributions of Rice Flour Measured by Microscope, Sieve, Coulter counter, and Aerodynamic Methods)

  • 김영진;김상숙
    • 한국식품과학회지
    • /
    • 제26권2호
    • /
    • pp.184-187
    • /
    • 1994
  • 쌀가루의 입도분포를 네가지 방법; 현미경법, 표준체법, 전기저항법(Coulter counter) 및 공기역학법(Aerosizer)으로 측정한 후 비교하였다. 동일한 쌀가루에 대하여 네가지 방법중에서 현미경법에서는 가장 작은 입도들의 분포로 나타났고 표준체법에서는 가장 크게 나타났다. 현미경법에서는 실제의 입도분포보다도 작게, 표준체법에서는 실제보다 크게 나타났다. 전기저항법과 공기역학법에 의하여 측정된 입도분포간에도 다소 차이가 있었다.

  • PDF

광학적 입자계수기를 이용한 2004년 황사기간 인천지역 에어로졸 특성 (Characteristics of Incheon Aerosol during Asian Dust Period in 2004 using Optical Particle Counter (OPC))

  • 정창훈;조용성;이종태
    • 한국환경과학회지
    • /
    • 제14권6호
    • /
    • pp.565-575
    • /
    • 2005
  • The characteristics for the aerosol number distribution was studied during spring, 2004 in Incheon. Optical Particle Counter (OPC, HIAC/ROYCO 5230) was used in order to measure the number concentration of aerosol in the range of $0.3\~25{\mu}m.$. The obtained results were compared with $PM_{2.5}\;and\;PM_{10}$ data during Asian dust events. The results show that the size resolved aerosol number concentration from OPC measurement has a similar tendency with $PM_{10}\;and\;PM_{2.5}$ mass concentration. During Asian dust periods, the number concentrations in large particle $(CH5\~CH8)$ increase more than small particles which diameter is less than $2.23{\mu}m(CH5)$ and the same results were shown when $PM_{10}$ was compared with $PM_{2.5}$ data compared with non-dust days, Consequently, this study shows that size resolved aerosol number concentration from OPC measurement can be used as a useful tool in comparison of mass concentration data.

가솔린과 바이오 에탄올 혼합 연료의 엔진 및 차량 모드 주행시의 입자상 물질 배출 특성 (Particle emission characteristics of gasoline and bio ethanol blend in the engine and vehicle mode test)

  • 고아현;이형민;최관희;박심수;이영재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3102-3107
    • /
    • 2008
  • This paper was focused on the particulate matter (PM) on the gasoline and bio ethanol. Bio ethanol as a clean fuel is considered one of the alternative fuels that decreased the PM emission from the vehicle. Particle formation in SI engine was depended on the fuel and engine operating condition. In this paper, Particle number concentration behaviors were analyzed by DMS500 (Differential Mobility Spectrometer) and CPC (Condensation Particle Counter) instrument which was recommended by PMP (Particle Measurement Programme). Particle emissions were measured with various engine operating variables such as air excess ratio ($\lambda$), spark timing and intake valve opening (IVO) at part load condition. In vehicle test, the number of particulate matter was analyzed with golden particle measurement system, which was consist of CVS (Constant Volume Sampler), particle number counter and particle number diluter.

  • PDF

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • 한국환경보건학회지
    • /
    • 제32권6호
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

Experimental study on single- and two-phase flow behaviors within porous particle beds

  • Jong Seok Oh;Sang Mo An;Hwan Yeol Kim;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1105-1117
    • /
    • 2023
  • In this study, the pressure drop behavior of single- and two-phase flows of air and water through the porous beds filled with uniform and non-uniform sized spherical particles was examined. The pressure drop data in the single-phase flow experiments for the uniform particle beds agreed well with the original Ergun correlation. The results from the two-phase flow experiments were analyzed using numerical results based on three types of previous models. In the experiments for the uniform particle beds, the data on the two-phase pressure drop clearly showed the effect of the flow regime transition with a variation in the gas flow rate under stagnant liquid condition. The numerical analyses indicated that the predictability of the previous models for the experimental data relied mainly on the sub-models of the flow regime transitions and interfacial drag. In the experiments for the non-uniform particle beds, the two-phase pressure loss could be predicted well with numerical calculations based on the effective particle diameter. However, the previous models failed to accurately predict the counter-current flooding limit observed in the experiments. Finally, we propose a relation of falling liquid velocity into the particle bed by gravity to appropriately simulate the CCFL phenomenon.

Gerdien 이온측정기를 이용한 에어로졸의 하전 특성 분석에 관한 연구 (Study on electrical charge distribution of aerosol using a Gerdien ion counter)

  • 조윤행;심준목;신일경;육세진;박현설
    • 한국입자에어로졸학회지
    • /
    • 제14권1호
    • /
    • pp.17-24
    • /
    • 2018
  • Since the motion of the charged particle strongly depends on its charge characteristics, information on charge distributions of target particles is one of the important variables in aerosol research. In this study, charged distribution of atomized NaCl particles were measured using a Gerdien type ion counter. Two kinds of particle charging conditions were used in this study. First, atomized NaCl particles were passed through an aerosol neutralizer to have a Boltzmann charge distribution, and then its charge distribution was measured. In this case, the portion of uncharged particles was compared with the portion obtained from the Boltzmann charge distribution for verifying the suggested experimental method. Second, same experiment was conducted without the aerosol neutralizer to measure the charge distribution of atomized and un-neutralized NaCl particles. In the conclusion, the portion of uncharged, negatively charged and positively charged particles were 19%, 62% and 20%, respectively, for neutralized particles. The atomized particles, which was generated without the aerosol neutralizer, also had almost a zero charge state, but the standard deviation in charge distribution was larger than that of neutralized particles. The test method proposed in this study is expected to be used in various aerosol research fields because it can obtain simple information on the particle charge characteristics more easily and quickly than the existing test methods.

습도 변화에 따른 에어로졸의 농도 및 크기의 변화경향 파악 (Change of the Size-Resolved Aerosol Concentration Due to Relative Humidity)

  • 정창훈;박진희;김용표
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.69-78
    • /
    • 2013
  • In this study, the atmospheric aerosol concentration measured at different relative humidity levels was analyzed. Using an optical particle counter, PM10 and PM2.5 concentration as well as particle size distribution were measured and the relation between these size resolved data and relative humidity was studied. The results showed that mass concentration increases as relative humidity increases. The comparison between PM1, PM2.5 and PM10 showed that the fine particles grow more than coarse particles as relative humidity increases. The results also showed that PM10-2.5 and relative humidity do not show close correlation, which means that the mass increase of PM10 at high relative humidity is mainly due to the growth of PM2.5.

액적 발생 장치 개발 및 성능 평가 (Development and Performance Evaluation of a Liquid Particle Generator)

  • 허정혁;김대성
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.4334-4340
    • /
    • 2012
  • 본 연구에서는 미세 액적을 발생시키는 액적 발생 장치를 개발 제작하고 이에 대한 성능 평가를 실시하였다. 액적 발생 장치는 spray-evaporation method를 기초로 제작하였으며, 0.3mm, 0.5mm의 오리피스를 사용하였다. 압축 공기 공급 압력을 1bar에서 4bar로 증가시키면서 공급 압력에 따른 발생되는 액적 크기의 미세 정도를 비교하였다. 또한 SMPS(Scanning Mobility Particle Sizer)와 OPC(Optical Particle Counter)를 이용하여 서로 다른 오리피스를 장착한 액적 발생 장치에서 발생되는 액적의 크기 분포를 측정하였다. 연구 결과, 0.3mm 오리피스를 장착한 장치에서 발생되는 액적은 $0.3{\mu}m$ 인근의 크기가 가장 많았으며, 미립화되는 입자는 매우 안정적이었다. 또한 0.5mm 오리피스를 장착한 장치가 0.3mm 오리피스를 장착한 장치에 비해 발생되는 액적의 크기가 큰 것으로 나타났다. 이러한 액적 발생 장치는 입자의 미세한 응집 현상이 나타나는데, 이것은 내부 액체가 미세한 액적으로 미립화되어 분사되기 때문인 것으로 사료된다. 본 연구에서 제작한 액적 발생 장치는 미세 입자를 미립화하기 위한 에어로졸 발생 장치로 사용 가능한 것으로 판단된다.