• Title/Summary/Keyword: Partially shaded conditions (PSC)

Search Result 2, Processing Time 0.016 seconds

Improved Global Maximum Power Point Tracking Method Based on Voltage Interval for PV Array under Partially Shaded Conditions

  • Ding, Kun;Wang, Xiang;Zhai, Quan-Xin;Xu, Jun-Wei;Zhang, Jing-Wei;Liu, Hai-Hao
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.722-732
    • /
    • 2014
  • The power-voltage (P-V) curve of photovoltaic (PV) arrays connected in parallel to bypass diodes would have several local maximum power points (LMPP) under partial shading conditions (PSC). Conventional maximum power point tracking (MPPT) methods fail to search for the global maximum power point (MPP) because the searched peak point may remain at the LMPP on the P-V curve under PSC. This study proposes an improved MPPT algorithm to ensure that PV arrays operate at global maximum power point (GMPP) under PSC. The proposed algorithm is based on a critical study and a series of observations of PV characteristics under PSC. Results show the regularity of voltage interval between LMPPs. The algorithm has the advantages of rapidly reaching GMPP, maintaining stability, and recovering GMPP quickly when the operating condition changes. Simulation and experimental results demonstrate the feasibility of the proposed algorithm.

Power Gain during Partial Shade Condition with Partial Shade Loss Compensation in Photovoltaic System

  • Yoon, Byung-Keun;Yun, Chul;Cho, Nae-Soo;Choi, Sang-Back;Jin, Yong-Su;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.769-780
    • /
    • 2018
  • This paper presents an analysis of the power gain under partial shading conditions (PSC) when the partial shade loss is being compensated in photovoltaic(PV) system. To analyze the power gain, our study divides the mismatch loss into partial shade loss and operating point loss. Partial shade loss is defined as the power difference between a normal string and a partially shaded string at the maximum power point (MPP). Operating point loss is defined as the power loss due to the operating point shift while following the MPP of the PV array. Partial shading in a PV system affects the maximum power point tracking (MPPT) control by creating multiple MPPs, which causes mismatch losses. Several MPPT algorithms have been suggested to solve the multiple MPP problems. Among these, mismatch compensation algorithms require additional power to compensate for the mismatch loss; however, these algorithms do not consider the gain or loss between the input power required for compensation and the increased output power obtained after compensation. This paper analyzes the power gain resulting from the partial shade loss compensation under PSC, using the V-P curve of the PV system, and verifies that power gain existence by simulation and experiment.