• Title/Summary/Keyword: Partially corrupted speech

Search Result 2, Processing Time 0.016 seconds

Channel-attentive MFCC for Improved Recognition of Partially Corrupted Speech (부분 손상된 음성의 인식 향상을 위한 채널집중 MFCC 기법)

  • 조훈영;지상문;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2003
  • We propose a channel-attentive Mel frequency cepstral coefficient (CAMFCC) extraction method to improve the recognition performance of speech that is partially corrupted in the frequency domain. This method introduces weighting terms both at the filter bank analysis step and at the output probability calculation of decoding step. The weights are obtained for each frequency channel of filter bank such that the more reliable channel is emphasized by a higher weight value. Experimental results on TIDIGITS database corrupted by various frequency-selective noises indicated that the proposed CAMFCC method utilizes the uncorrupted speech information well, improving the recognition performance by 11.2% on average in comparison to a multi-band speech recognition system.

Weighted filter bank analysis and model adaptation for improving the recognition performance of partially corrupted speech (부분 손상된 음성의 인식성능 향상을 위한 가중 필터뱅크 분석 및 모델 적응)

  • Cho Hoon-Young;Oh Yung-Hwan
    • MALSORI
    • /
    • no.44
    • /
    • pp.157-169
    • /
    • 2002
  • We propose a weighted filter bank analysis and model adaptation (WFBA-MA) scheme to improve the utilization of uncorrupted or less severely corrupted frequency regions for robust speech recognition. A weighted met frequency cepstral coefficient is obtained by weighting log filter bank energies with reliability coefficients and hidden Markov models are also modified to reflect the local reliabilities. Experimental results on TIDIGITS database corrupted by band-limited noises and car noise indicated that the proposed WFBA-MA scheme utilizes the uncorrupted speech information well, significantly improving recognition performance in comparison to multi-band speech recognition systems.

  • PDF