• 제목/요약/키워드: Partial least square discrimination method(PLS-DA)

검색결과 6건 처리시간 0.019초

Discrimination between Artemisia princeps and Artemisia capillaris Based on Near Infrared Spectroscopy Combined Multivariate Analysis

  • Lee, Dong-Young;Jeon, Min-Ji;Suh, Young-Bae;Kim, Seung-Hyun;Kim, Young-Choong;Sung, Sang-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권6호
    • /
    • pp.377-380
    • /
    • 2011
  • The Artemisia princeps (Compositae) has been used in traditional Korean medicine for the treatment of microbial infections and inflammatory diseases. Since A. princeps is generally difficult to be discriminated from A. capillaris, A. caplillaris has been misused in place of A. princeps. To solve this problem, a rapid and nondestructive method for discrimination of A. princeps and A. capillaris samples was developed using near infrared spectroscopy (NIRS) in the present study. A principal component analysis (PCA) and a partial least squares discrimination analysis (PLS-DA) were performed to discriminate two species. As a result, with the use of PLS-DA, A. princeps and A. capillaris were clustered according to their genus. These outcomes indicated that the NIRS could be useful for the discrimination between Artemisia princeps and Artemisia capillaris.

Volatile Compounds for Discrimination between Beef, Pork, and Their Admixture Using Solid-Phase-Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) and Chemometrics Analysis

  • Zubayed Ahamed;Jin-Kyu Seo;Jeong-Uk Eom;Han-Sul Yang
    • 한국축산식품학회지
    • /
    • 제44권4호
    • /
    • pp.934-950
    • /
    • 2024
  • This study addresses the prevalent issue of meat species authentication and adulteration through a chemometrics-based approach, crucial for upholding public health and ensuring a fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-phase-microextraction-gas chromatography-mass spectrometry. Adulterated meat samples were effectively identified through principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection scores and a Random Forest test, 11 key compounds, including nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat.

Hyperspectral Imaging and Partial Least Square Discriminant Analysis for Geographical Origin Discrimination of White Rice

  • Mo, Changyeun;Lim, Jongguk;Kwon, Sung Won;Lim, Dong Kyu;Kim, Moon S.;Kim, Giyoung;Kang, Jungsook;Kwon, Kyung-Do;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제42권4호
    • /
    • pp.293-300
    • /
    • 2017
  • Purpose: This study aims to propose a method for fast geographical origin discrimination between domestic and imported rice using a visible/near-infrared (VNIR) hyperspectral imaging technique. Methods: Hyperspectral reflectance images of South Korean and Chinese rice samples were obtained in the range of 400 nm to 1000 nm. Partial least square discriminant analysis (PLS-DA) models were developed and applied to the acquired images to determine the geographical origin of the rice samples. Results: The optimal pixel dimensions and spectral pretreatment conditions for the hyperspectral images were identified to improve the discrimination accuracy. The results revealed that the highest accuracy was achieved when the hyperspectral image's pixel dimension was $3.0mm{\times}3.0mm$. Furthermore, the geographical origin discrimination models achieved a discrimination accuracy of over 99.99% upon application of a first-order derivative, second-order derivative, maximum normalization, or baseline pretreatment. Conclusions: The results demonstrated that the VNIR hyperspectral imaging technique can be used to discriminate geographical origins of rice.

근적외선분광법을 이용한 택사의 산지 판별법 연구 (Discrimination of Alismatis Rhizoma According to Geographical Origins using Near Infrared Spectroscopy)

  • 이동영;김승현;김효진;성상현
    • 생약학회지
    • /
    • 제44권4호
    • /
    • pp.344-349
    • /
    • 2013
  • Near infrared spectroscopy (NIRS) combined with multivariate analysis was used to discriminate the geographical origin of Alisma orientale from Korea (n=94) and China (n=72). Two-thirds of samples were selected randomly for the training set, and one-third of samples for the test set. Second derivative was used for the pretreatment of NIR spectra. Partial least square discriminant analysis (PLS-DA) models correctly discriminated 100% of the Korean and Chinese A. orientale samples. These results demonstrate the potential use of NIR spectroscopy combined with multivariate analysis as a rapid and accurate method to discriminate A. orientale according to their geographical origin.

Untargeted metabolomics using liquid chromatography-high resolution mass spectrometry and chemometrics for analysis of non-halal meats adulteration in beef meat

  • Anjar Windarsih;Nor Kartini Abu Bakar;Abdul Rohman;Nancy Dewi Yuliana;Dachriyanus Dachriyanus
    • Animal Bioscience
    • /
    • 제37권5호
    • /
    • pp.918-928
    • /
    • 2024
  • Objective: The adulteration of raw beef (BMr) with dog meat (DMr) and pork (PMr) becomes a serious problem because it is associated with halal status, quality, and safety of meats. This research aimed to develop an effective authentication method to detect non-halal meats (dog meat and pork) in beef using metabolomics approach. Methods: Liquid chromatography-high resolution mass spectrometry (LC-HRMS) using untargeted approach combined with chemometrics was applied for analysis non-halal meats in BMr. Results: The untargeted metabolomics approach successfully identified various metabolites in BMr DMr, PMr, and their mixtures. The discrimination and classification between authentic BMr and those adulterated with DMr and PMr were successfully determined using partial least square-discriminant analysis (PLS-DA) with high accuracy. All BMr samples containing non-halal meats could be differentiated from authentic BMr. A number of discriminating metabolites with potential as biomarkers to discriminate BMr in the mixtures with DMr and PMr could be identified from the analysis of variable importance for projection value. Partial least square (PLS) and orthogonal PLS (OPLS) regression using discriminating metabolites showed high accuracy (R2 >0.990) and high precision (both RMSEC and RMSEE <5%) in predicting the concentration of DMr and PMr present in beef indicating that the discriminating metabolites were good predictors. The developed untargeted LC-HRMS metabolomics and chemometrics successfully identified non-halal meats adulteration (DMr and PMr) in beef with high sensitivity up to 0.1% (w/w). Conclusion: A combination of LC-HRMS untargeted metabolomic and chemometrics promises to be an effective analytical technique for halal authenticity testing of meats. This method could be further standardized and proposed as a method for halal authentication of meats.

초분광 반사광 영상을 이용한 무(Raphanus sativus L) 종자의 발아와 불발아 비파괴 판별 (Nondestructive Classification of Viable and Non-viable Radish (Raphanus sativus L) Seeds using Hyperspectral Reflectance Imaging)

  • 안치국;모창연;강점순;조병관
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.411-419
    • /
    • 2012
  • Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.