• Title/Summary/Keyword: Partial Unmixing

Search Result 3, Processing Time 0.023 seconds

Hyperspectral Target Detection by Iterative Error Analysis based Spectral Unmixing (Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.547-557
    • /
    • 2017
  • In this paper, a new spectral unmixing based target detection algorithm is proposed which adopted Iterative Error Analysis as a tool for extraction of background endmembers by using the target spectrum to be detected as initial endmember. In the presented method, the number of background endmembers is automatically decided during the IEA by stopping the iteration when the maximum change in abundance of the target is less than a given threshold value. The proposed algorithm does not have the dependence on the selection of image endmembers in the model-based approaches such as Orthogonal Subspace Projection and the target influence on the background statistics in the stochastic approaches such as Matched Filter. The experimental result with hyperspectral image data where various real and simulated targets are implanted shows that the proposed method is very effective for the detection of both rare and non-rare targets. It is expected that the proposed method can be effectively used for mineral detection and mapping as well as target object detection.

Extraction of the aquaculture farms information from the Landsat- TM imagery of the Younggwang coastal area

  • Shanmugam, P.;Ahn, Yu-Hwan;Yoo, Hong-Ryong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.493-498
    • /
    • 2004
  • The objective of the present study is to compare various conventional and recently evolved satellite image-processing techniques and to ascertain the best possible technique that can identify and position of aquaculture farms accurately in and around the Younggwang coastal area. Several conventional techniques performed to extract such information fiom the Landsat-TM imagery do not seem to yield better information about the aquaculture farms, and lead to misclassification. The large errors between the actual and extracted aquaculture farm information are due to existence of spectral confusion and inadequate spatial resolution of the sensor. This leads to possible occurrence of mixture pixels or 'mixels' of the source of errors in the classification techniques. Understanding the confusing and mixture pixel problems requires the development of efficient methods that can enable more reliable extraction of aquaculture farm information. Thus, the more recently evolved methods such as the step-by-step partial spectral end-member extraction and linear spectral unmixing methods are introduced. The farmer one assumes that an end-member, which is often referred to as 'spectrally pure signature' of a target feature, does not appear to be a spectrally pure form, but always mix with the other features at certain proportions. The assumption of the linear spectral unmxing is that the measured reflectance of a pixel is the linear sum of the reflectance of the mixture components that make up that pixel. The classification accuracy of the step-by-step partial end-member extraction improved significantly compared to that obtained from the traditional supervised classifiers. However, this method did not distinguish the aquaculture ponds and non-aquaculture ponds within the region of the aquaculture farming areas. In contrast, the linear spectral unmixing model produced a set of fraction images for the aquaculture, water and soil. Of these, the aquaculture fraction yields good estimates about the proportion of the aquaculture farm in each pixel. The acquired proportion was compared with the values of NDVI and both are positively correlated (R$^2$ =0.91), indicating the reliability of the sub-pixel classification.ixel classification.

  • PDF

Extraction of Water Depth in Coastal Area Using EO-1 Hyperion Imagery (EO-1 Hyperion 영상을 이용한 연안해역의 수심 추출)

  • Seo, Dong-Ju;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.716-723
    • /
    • 2008
  • With rapid development of science and technology and recent widening of mankind's range of activities, development of coastal waters and the environment have emerged as global issues. In relation to this, to allow more extensive analyses, the use of satellite images has been on the increase. This study aims at utilizing hyperspectral satellite images in determining the depth of coastal waters more efficiently. For this purpose, a partial image of the research subject was first extracted from an EO-1 Hyperion satellite image, and atmospheric and geometric corrections were made. Minimum noise fraction (MNF) transformation was then performed to compress the bands, and the band most suitable for analyzing the characteristics of the water body was selected. Within the chosen band, the diffuse attenuation coefficient Kd was determined. By deciding the end-member of pixels with pure spectral properties and conducting mapping based on the linear spectral unmixing method, the depth of water at the coastal area in question was ultimately determined. The research findings showed the calculated depth of water differed by an average of 1.2 m from that given on the digital sea map; the errors grew larger when the water to be measured was deeper. If accuracy in atmospheric correction, end-member determination, and Kd calculation is enhanced in the future, it will likely be possible to determine water depths more economically and efficiently.