• Title/Summary/Keyword: Partial Mutation

Search Result 47, Processing Time 0.028 seconds

Partial HPRT Deficiency Due to a Missense Mutation in the HPRT Gene (HPRT 유전자 돌연변이에 의한 HPRT 부분결핍증 1례)

  • Yang Ju-Hee;Park Min-Hyuk;Kim Deok-Soo;Shim Jae-Won;Shim Jung-Yeon;Jung Hye-Lim;Yoo Han-Wook;Park Moon-Soo
    • Childhood Kidney Diseases
    • /
    • v.7 no.1
    • /
    • pp.86-90
    • /
    • 2003
  • An 8-month-old male infant presented with persistent, gross, orange-colored crystals in his urine. His physical and neurological development was normal. Laboratory study showed hyperuricemia, hyperuricosuria and urate crystaluria. He was determined to have partial hypoxanthine-guanine phosphoribosyl transferase(HPRT) deficiency. The molecular genetic analysis revealed a missense mutation in the patient's HPRT gene. By sequencing the patient's cDNA, we identified an A-to-G transition at nucleotide 239, resulting in the replacement of Aspartate with Glycine at amino acid 80 in the HPRT. To our knowledge, this mutation has not previously been reported. Our patient is now being placed on allopurinol therapy, and has had no problem since. Partial HPRT deficiency has been known to cause recurrent acute renal failure without the phenotypic features of Lesch-Nyhan syndrome. Therefore, we think that early diagnosis and treatment are very crucial in preventing acute renal failure.

  • PDF

Desmopressin responding female nephrogenic diabetes insipidus: a case report

  • Juyeon Lee;Hae Il Cheong;Jung Won Lee;Ki Soo Pai
    • Childhood Kidney Diseases
    • /
    • v.26 no.2
    • /
    • pp.107-110
    • /
    • 2022
  • Nephrogenic diabetes insipidus, decreased ability to concentrate urine, with production of large amounts of urine, is caused by the refractory response of renal tubules to the action of antidiuretic hormone. This rare disorder, known as X-linked nephrogenic diabetes insipidus, is caused by a mutation in the AVPR2 gene. Because it is hereditary, most patients are male. This report highlights a case of nephrogenic diabetes insipidus in a 3-year 5-month-old female; upon presentation to the hospital, her symptoms included frequent urinationand consumptionof a significant amount ofwater,which had begun2 years ago. The results of blood tests showed increased levels of serum antidiuretic hormone, and sellar magnetic resonance imaging showed no abnormality. The results of the water restriction test and the desmopressin administration test confirmed the diagnosis of nephrogenic diabetes insipidus showing a partial response to desmopressin. The results of genetic testing indicated the presence of an AVPR2 mutation, a heterozygous missense mutation (p.Val88Met), suggesting inheritance of X-linked nephrogenic diabetes insipidus. This report describes a significant case of symptomaticX-linked nephrogenic diabetes insipidus in a female patient who showed a partial response to desmopressin.

A New Genetic Algorithm for Shortest Path Routing Problem (최단 경로 라우팅을 위한 새로운 유전자 알고리즘)

  • ;R.S. Ramakrishna
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1215-1227
    • /
    • 2002
  • This paper presents a genetic algorithmic approach to shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation that exchanges partial chromosomes (partial-routes) at positionally independent crossing sites and the mutation operation maintain the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types (network sizes and topologies) for almost all source-destination pairs.

Linkage of the Kanamycin Resistance Gene with the Streptothricin Resistance Gene in Staphylococcus aureus SA2

  • Shin, Chul Kyo;Sung Hwan Im;Woo Koo Kim;Kyung Bo Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.219-220
    • /
    • 1996
  • The pKH2 isolated from the multidrug-resistant Staphylococcus aureus SA2 is a 40.98-kb plasmid and mediates resistance to ampicillin, clindamycin, erythromycin, kanamycin, and streptomycin. The 3.4-kb HindIII fragment conferring kanamycin resistance was cloned from the pKH2 into pBluescriptII $KS^+$ and partial sequence determination of that fragment was carried out. Sequence analysis revealed that the kanamycin resistance gene which encoded aminoglycoside 3'-phosphotransferase was linked to the streptothricin resistance gene. But a nonsense mutation was found in the streptothricin resistance gene and this mutation resulted in a truncated protein of streptothricin acetyltransferase. Homology comparison with nucleotide sequence databases revealed that the 3.4-kb HindIII fragment of pKH2 had been derived not from S. aureus but from Gram-negative Campylobacter coli.

  • PDF

Genetic relationship between the SPT3 gene and ARS/cAMP pathway in yeast cell cycle control (Genetic Relationship between the SPT3 Gene and RAS/cAMP Pathway in Yeast Cell Cycle Control)

  • Shin, Deug-Yong;Yun, Jean-Ho
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.158-165
    • /
    • 1996
  • The signal transduction pathways through the RAS gene product and adenyl cyclease play a critical role in regulation of the cell cycle in yeast, Saccharomyces cerevisiae. We examined the genetic relationship between the spt3 gene and ras/cAMP pathway. A mutation in the SPT3 gene suppressed cell cycle arrest at the G1 phase caused by either an inactivation of the RAS or CYR1 gene which encodes a yeast homologue of human ras proto-oncogene or adenyl cyclase, respectively. The phenotypes such as sporulation and heat shock resistancy, that resulted from a partial inactivation of the RAS or CYR1 genes, were also suppressed by the spt3 mutation. Expression of the SSA1 gene encoding one of th heat shock proteins (Hsp70) can be induced by heat shock or nitrogen starvation. Expression of this gene is derepressed in cry1-2 and spt3 mutants. The bcy 1 mutation repressed by the bcy1 mutation, but not in spt3 mutants. These results suggest that the SPT gene is involved in expression of genes that are affected by the RAS/cAMP pathway.

  • PDF

Identification of chromosomal translocation causing inactivation of the gene encoding anthocyanidin synthase in white pomegranate (Punica granatum L.) and development of a molecular marker for genotypic selection of fruit colors

  • Jeong, Hyeon-ju;Park, Moon-Young;Kim, Sunggil
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.857-864
    • /
    • 2018
  • Previous studies have not detected transcripts of the gene encoding anthocyanidin synthase (ANS) in white pomegranates (Punica granatum L.) and suggest that a large-sized insertion in the coding region of the ANS gene might be the causal mutation. To elucidate the identity of the putative insertion, 3887-bp 5' and 3392-bp 3' partial sequences of the insertion site were obtained by genome walking and a gene coding for an expansin-like protein was identified in these genome-walked sequences. An identical protein (GenBank accession OWM71963) isolated from pomegranate was identified from BLAST search. Based on information of OWM71963, a 5.8-Mb scaffold sequence with genes coding for the expansin-like protein and ANS were identified. The scaffold sequence assembled from a red pomegranate cultivar also contained all genome-walked sequences. Analysis of positions and orientations of these genes and genome-walked sequences revealed that the 27,786-bp region, including the 88-bp 5' partial sequences of the ANS gene, might be translocated into an approximately 22-kb upstream region in an inverted orientation. Borders of the translocated region were confirmed by PCR amplification and sequencing. Based on the translocation mutation, a simple PCR codominant marker was developed for efficient genotyping of the ANS gene. This molecular marker could serve as a useful tool for selecting desirable plants at young seedling stages in pomegranate breeding programs.

Factors associated with effectiveness of and rash occurrence by Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in patients with non-small cell lung cancer (비소세포폐암 환자에 있어서 Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors의 약효 및 rash 발생과 관련한 인자에 대한 연구)

  • Bae, Na-Rae;Choi, Hye-Jin;Lee, Byung-Koo;Gwak, Hye-Sun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.18 no.2
    • /
    • pp.75-83
    • /
    • 2008
  • Purpose: Currently lung cancer ranks second in cancer for incidence rate and is a disease that ranks first for a death rate by cancerous growth because it is already advanced at the time of diagnosis. The purpose of this paper was to analyze the factors that affect the effectiveness of and rash occurrence by Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR TKI) in patients with non-small cell lung cancer. Methods: A retrospective chart review of 100 patients, who took EGFR TKI (erlotinib, gefitinib) among patients who were diagnosed with non-small cell lung cancer in a Hospital in Korea between May 2005 and February 2008, was conducted. The drug effectiveness was evaluated by Response Evaluation Criteria In Solid Tumor. Results: EGFR mutation was the only factor associated with drug response (complete response and partial response). When stable disease was added to drug response as the evaluation parameter, ECOG and rash as well as EGFR mutation were found to be important factors. Survival, however, was not affected by EGFR mutation. The factors influenced on survival were older age (${\geq}65$), low ECOG ($1{\sim}2$), adenocarcinoma and rash. In the case of rash, group with EGFR mutation or low ECOG showed significantly higher chance of occurrence. There was no significant difference in rash occurrence between gefitinib and erlotinib groups. Conclusions: Based on the results, EGFR mutation positive and low ECOG ($1{\sim}2$) were significantly important factors for both effectiveness of EGFR TKI and rash occurrence. Also, rash itself was found to be an independently significant factor for the disease control and survival. Therefore, while administering EGFR TKI, patients who have the factors associated with rash occurrence should be closely monitored for effective and safe drug therapy.

  • PDF

Identification of Novel Mutations In Adenosine Deaminase Gene In Korean Leukemia Patients (한국인 백혈병 환자에서 아데노신 디아미나제 유전자의 새로운 변이의 확인)

  • Park, Ki-Ho
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.453-456
    • /
    • 2010
  • Leukemia is the abnormal increase of hematopoietic progenitor cells in tissues, resulting in anemia, increased susceptibility to infection and impaired blood clotting. The adenosine deaminase (ADA) gene is an important druggable target for the treatment of leukemia patients. Genetic and molecular analyses were performed to determine the effects of ADA gene mutations in 20 leukemia patients in the Korean population. To analyze the relationship between genotype and phenotype, the ADA genomic DNAs - including 1,092 bp of 12 exons and partial intron sequences flanking each exon - were sequenced and compared. In this study, the known mutations in other diseases, more than 50 mutations already reported in patients with severe combined immunodeficiency disease (SCID) and autism, were not found, but two novel mutations in leukemia patients were discovered. They include one nonsense mutation (A>C at nt position 478, F101F) and one missense mutation (G>A at nt position 778, E260K). One missense mutation (G>A at nt position 22, D8Y) was also detected in 20 normal control patients (allelic frequency of 7.5%). Interestingly, subjects in the Korean population retained 2 bp insertion at the intron 6 (IVS6-52insGC), something that has never been shown in other populations. The genetic study to find out the correlation between the mutant alleles and leukemia patients revealed no association statistically (p>0.05). The mutation found in leukemia needs further study to determine its possibility as a molecular marker for the diagnosis of leukemia.

A novel MLL2 gene mutation in a Korean patient with Kabuki syndrome

  • Kim, Soo Jin;Cho, Sung Yoon;Maeng, Se Hyun;Sohn, Young Bae;Kim, Su-Jin;Ki, Chang-Seok;Jin, Dong-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.8
    • /
    • pp.355-358
    • /
    • 2013
  • Kabuki syndrome (KS) is a rare genetic disease with a distinctive dysmorphic face, intellectual disability, and multiple congenital abnormalities. KS is inherited in an autosomal dominant manner. As the primary cause of KS, MLL2 mutations have been identified in 56-76% of affected individuals who have been tested, suggesting that there may be additional genes associated with KS. Recently, a few KS individuals have been found to have de novo partial or complete deletions of an X chromosome gene, KDM6A, which encodes a histone demethylase that interacts with MLL2. Nevertheless, mutations in MLL2 are the major cause of KS. Although there are a few reports of KS patients in Korea, none of these had been confirmed by genetic analysis. Here, we report a case of a Korean patient with clinical features of KS. Using direct sequencing, we identified a frameshift heterozygous mutation for MLL2 : (c.5256_5257delGA;p.Lys1753Alafs$^*34$). Clinically, the patient presented with typical facial features, and diagnosis of KS was based on the diagnostic criteria. While KS is a rare disease, other malformations that overlap with those found in individuals with KS are common. Hence, the diagnosis of KS by mutational analysis can be a valuable method for patients with KS-like syndromes. Furthermore, in the near future, other genes could be identified in patients with KS without a detectable MLL2 mutation.

Association of Functional Polymorphisms of the XRCC4 Gene with the Risk of Breast Cancer: A Meta-analysis

  • Zhou, Li-Ping;Luan, Hong;Dong, Xi-Hua;Jin, Guo-Jiang;Ma, Dong-Liang;Shang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3431-3436
    • /
    • 2012
  • Objective: X-ray cross-complementing group 4 (XRCC4) is a major repair gene for DNA double-strand breaks (DSB) in the non-homologous end-joining (NHEJ) pathway. Several potentially functional polymorphisms of the XRCC4 gene have been implicated in breast cancer risk, but individually published studies showed inconclusive results. The aim of this meta-analysis was to investigate the association between XRCC4 polymorphisms and the risk of breast cancer. Methods: The MEDLINE, EMBASE, Web of science and CBM databases were searched for all relevant articles published up to June 20, 2012. Potential associations were assessed with comparisons of the total mutation rate (TMR), complete mutation rate (CMR) and partial mutation rate (PMR) in cases and controls. Statistical analyses were performed using RevMan 5.1.6 and STATA 12.0 software. Results: Five studies were included with a total of 5,165 breast cancer cases and 4,839 healthy controls. Meta-analysis results showed that mutations of rs2075686 (C>T) and rs6869366 (G>T) in the XRCC4 gene were associated with increased risk of breast cancer, while rs2075685 (G>T) and rs10057194 (A>G) might decrease the risk of breast cancer. However, rs1805377 (A>G), rs1056503 (G>T), rs28360317 (ins>del) and rs3734091 (A>G) polymorphisms of XRCC4 gene did not appear to have an influence on breast cancer susceptibility. Conclusion: Results from the current meta-analysis suggest that the rs2075685 (G>T) and rs6869366 (G>T) polymorphisms of the XRCC4 gene might increase the risk of breast cancer, whereas rs2075685 (G>T) and rs10057194 (A>G) might be protective factors.