• Title/Summary/Keyword: Partial Load

Search Result 551, Processing Time 0.023 seconds

Evaluation of partial safety factors of Hudson formula for Tetrapod armor units constructed in Korea (국내에서 시공된 Tetrapod 피복재에 대한 Hudson 공식의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.345-356
    • /
    • 2009
  • Tetrapod has been used as the armor blocks of most rubble mound breakwaters constructed in Korea. The Hudson formula has been widely used in the design of breakwater armor blocks in Korea. In the present study, we calculate the load and resistance partial safety factors of the Hudson formula for Tetrapod armors. The partial safety factors were calculated for the typical breakwater cross-sections of 12 trade harbors and 8 coastal harbors in Korea. The mean and standard deviation of them were also calculated. The mean values were compared with the partial safety factors of US Army (2006). The load and resistance factors are slightly smaller and larger, respectively, than the US Army values. However, the overall safety factors obtained by multiplying the load and resistance factors are close to the US Army values. The result of the present study could be used as the basic data to propose authorized partial safety factors in the future.

A PHOTOELASTIC STUDY ON THE STRESS ANALYSIS UNDER MADIBULAR DISTAL-EXTENSION REMOVABLE PARTIAL DENTURE WITH DIFFERENT DESIGN OF THE MAJOR CONNECTOR (주 연결장치의 설계변화에 따른 하악 유리단 국소의치의 광탄성 응력 분석에 관한 연구)

  • Lee, Kyw-Chil;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.177-194
    • /
    • 1991
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a distal extension removable partial dentures with three kinds of mandibular major connectors, that is, lingual bar, linguoplate, and swing-lock attachment. A photoelastic model was made of the epoxy resin(PC-1) and hardener(PCH-1) and coated with plastic cement-1 (PC-1) at the lingual surface of the epoxy model and set with three kinds of chrome-cobalt removable partial dentures. A bilateral vertical load of 15kg to the middle portion of the metal bar crossing both the first molars of the right and the left, and a unilateral vertical load of 12.5kg to the right first molar were applied with the use of specially designed loading device and the reflective circular polariscope was used to analyze the photoelastic model under each condition. The following results were obtained : 1. When the bilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 2. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 3. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the termial abutment or adjacent teeth on the non-loaded side showed the least stress distribution in case of swing-lock attachment. 4. When the bilateral vertical load and the unilateral vertical load were applied the swing-lock attachment showed the mildest uniform stress distribution on the edentulous area and the alveolar bone around the abutment teeth.

  • PDF

A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE (골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석)

  • Jeong Chang-Mo;Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF

Study on the change in stiffness of nailed joints due to creep (CREEP에 의한 못 결합부(結合部)의 강성도(剛性度)의 변화(變化)에 관한 연구(硏究))

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.35-43
    • /
    • 1989
  • Nailed joints, which are commonly used in Wooden structures, transmit loads from one member to another and induce partial composite actions between members. Long-term loads induce creep slip in nailed joints and affect load sharing and partial composite action, which may reduce joint stiffness. Two theoretical viscous-viscoelastic models were developed for nailed joints to predict creep behavior under long-term variable loads. Those models were also used to predict stiffness changes under long-term variable loads. The stiffness of nailed joint is defined as a Secant modulus which is called the joint modulus or slip modulus. Input data for the models are the results of constant load tests under three different load levels. To verify the models, nailed joints were also tested under two long-term variable load functions. The predictions of the models were very close to the experimental data. Therefore, the theoretical viscous-viscoelastic models and procedures developed in this study can be applied to predict creep slip and the changes in joint moduli of nailed joints under long-term variable loads.

  • PDF

Load & Resistance Factors Calibration for Sliding and Overturning Limit State Design of Perforated Caisson Breakwater (유공케이슨 방파제 활동 및 전도 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Calibration of load-resistance factors for the limit state design of perforated caisson breakwaters are presented. Reliability analysis of 12 breakwaters in nationwide ports was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, some load-resistance factors were proposed by changing target reliability index.

Load & Resistance Factors Calibration for Front Covered Caisson Breakwater (소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn;Huh, Jungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country's code for verification.

Performance Analysis of HP Steam Turbines. of LNG Carriers (LNG 운반선용 증기터빈 고압단의 성능해석)

  • Park, Jong-Hwoo;Chung, Kyung-Nam;Kim, Yang-Ik;Cho, Seoung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.275-278
    • /
    • 2006
  • A steam turbine is one of propulsion systems of a LNG carrier, which consists of high pressure (HP) and low pressure (LP) turbines. In order to obtain high power, each one has the form of a multi-stage turbine. Especially, the first stage of a HP turbine is Curtis stage and uses partial admission considering the turbine efficiency. The performance of a HP turbine can be predicted by a mean-line analysis method, because the relatively large value of hub-tip ratio makes the three-dimensional losses small. In this study, a performance analysis method is developed for a multi-stage HP turbine using Chen's loss model developed for the transonic steam turbines. To consider the feature of partial admission, different partial admission models are reviewed, This analysis method can be used in partial load conditions as well as full load condition. The calculation results are also compared with the CFD results about some simple cases to check the accuracy of the program. Performance of two HP turbine models are calculated, and the calculation results are compared with the designed data. The comparison shows the qualitative performance analysis result.

  • PDF

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

Evaluation of Structural Behavior of Large Studs Using Partial Composite Beams (부분합성보를 이용한 대직경 스터드의 구조거동 평가)

  • Shim, Chang Su;Lee, Pil Goo;Ha, Tae Yul
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.425-432
    • /
    • 2004
  • Large studs were suggested not only for the design of steel-concrete composite bridges with simplified sections but also for the shear connection in precast decks requiring uniform distribution of shear pockets. Based on the push-out test results on studs with diameters of more than 25 mm, partial composite beams with 40%-degree shear connection were fabricated, and static tests were performed. The ultimate strength and horizontal shear load redistribution of partial composite beams, which have parameters of stud shank diameters and distribution, were evaluated, and group failure in the shear span was observed. Since the flexural strength of composite beams are dependent on the strength of their shear connection, the strength of the stud connection was estimated and it showed considerably higher shear strength. From the load-slip curves, the sufficient ductility and load redistribution of large studs were confirmed. Uniformly distributed large studs can provide proper ultimate behavior of composite beams.

Experimental Study on the Two Phase Thermosyphone Loop with Parallel Connected Multiple Evaporators under Partial Load and Low Temperature Operating Condition (병렬 연결된 다중 증발기 구조 2상 유동 순환형 열사이폰의 부분부하 및 저온운전 특성에 관한 실험적 연구)

  • Kang In-Seak;Choi Dong-Kyu;Kim Taig-young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1051-1059
    • /
    • 2004
  • Two phase thermosyphone loop for electronics cooling are designed and manufactured to test its performance under the partial load and low environment temperature conditions. The thermosyphone device has six evaporators connected parallel for the purpose of cooling six power amplifier units (PAU) independently. The heater modules for simulating PAUs are adhered with thermal pad to the evaporator plates to reduce the contact resistance. There are unbalanced distributions of liquid refrigerant in the differently heated evaporators due to the vapor pressure difference. To reduce the vapor pressure differences caused by partial heating, two evaporators are connected each other using the copper tube. The pressure regulation tube successfully reduces these unbalances and it is good candidates for a field distributed systems. Under the low environment temperature operating condition, such as $-30^{\circ}C$, there may be unexpected subcooling in condenser. It leads the very low saturation pressure, and under this condition there exists explosive boiling in evaporator. The abrupt pressure rise due to the explosive boiling inhibits the supplement of liquid refrigerant to the evaporator for continuous cooling. Finally the cooling cycle will be broken. For the normal circulation of refrigerant there may be an optimum cooling air flow rate in condenser to adjust the given heat load.