• 제목/요약/키워드: Partial Load

검색결과 554건 처리시간 0.03초

콘크리트 교량의 고정하중 응력에 관한 실험적 측정방법 (An Experimental Method for the Evaluation of Dead Load Stress in Existing Concrete Bridges)

  • 박대성;김우
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.701-706
    • /
    • 2006
  • 이 논문은 콘크리트 교량의 내하력 평가에서 고정하중이 차지하는 응력을 현장측정 기법으로 평가하는 방법을 제시한 것이다. 이론적인 구조계산에만 의존하고 있는 고정하중에 대한 응력평가는 열화된 교량의 실제응력을 충분하게 반영하지 못하고 있는 실정이다. 따라서 이러한 문제점을 극복하기위한 방법으로 부분절단법을 제시하였으며 이 방법은 외부의 추가적인 하중재하없이 순수 고정하중에 의해 유발된 부재응력을 현장에서 직접적으로 측정할 수 있도록 고안된 것이다. 부분절단법의 적용은 기존의 이론적인 구조계산방법을 보완하고 보다 실질적인 고정하중 응력을 반영할 수 있게 된다. 제안된 현장 측정 방법의 적용성은 기존평가방법과 비교하여 검증하였다.

중앙식 냉방 플랜트의 유량제어를 통한 에너지 절감에 관한 연구 (Flow Control of a Centralized Cooling Plant for Energy Saving)

  • 이정남;김영일;정광섭
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.48-54
    • /
    • 2015
  • 중앙집중식 냉방 시스템을 적용하고 있는 대형 빌딩이나 플랜트 설비들의 경우 부하 증설 및 피크부하에 대응하기 위한 여유율을 반영한 설비 설계 및 시공이 이루어지고 있다. 이는 부분부하가 걸리는 기간 동안에는 설비의 저부하 운전으로 인한 장비의 효율 저하와 에너지 과소비의 원인이 된다. 본 연구는 부분부하에 효율적으로 대응할 수 있도록 냉방플랜트 최적 유량제어를 통한 에너지 절감 방안에 대한 연구로서 냉방플랜트 에너지 성능 분석 프로그램을 이용하여 냉방 부하를 분석하고, 최적 유량제어 시스템을 제안하여 그 에너지 성능을 비교 평가하는 것을 목적으로 한다. 성능 분석 결과 냉방플랜트 최적 유량제어 시스템 적용 시 기존 에너지 사용량 대비 약 17%의 전기에너지 절감이 가능하였다.

유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구 (Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location)

  • 손성식;김영직;이명곤
    • 대한치과기공학회지
    • /
    • 제29권1호
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF

PSC-강 혼합거더의 연결부 거동 해석 (Analysis of the Composite Section in PSC-Steel Hybrid Girder)

  • 김광수;정광희;심정욱;유성원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.766-769
    • /
    • 2004
  • This paper presents 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-Steel hybrid girders. According to the slip modulus, the nonlinear analysis shows that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results show that the PSC-Steel hybrid girders with shear connectors take the part of partial composite action in ultimate load stage. In addition, the load test results give that stud shear connectors and welded reinforcements have contributed to improve the ultimate strength of hybrid girders for about $20\%$.

  • PDF

신뢰성공학에 근거한 하중-강도계수 설계법과 부분안전계수의 개념 및 적용 (The Concepts and the Applications of Load and Resistance Factor Design and Partial Safety Factor Based on the Reliability Engineering)

  • 유연식;김태완;김종인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.309-314
    • /
    • 2007
  • Recently, the LRFD and the PSF based on structural reliability assessment have been applied to NPP designs in behalf of the conventional deterministic design methods. In the risk-informed structural integrity, it is especially possible to optimize design procedures considering cost, manufacturing and maintenance because the structural reliability concepts have confirmed the reliability for which a designer aims. Generally, in order to evaluate the PSF, the LRFD which is the design concept for evaluating safety factors respectively on the limit state function including load and resistance. This study certifies the concept and its applications of the PSF using the LRFD based on the structural reliability engineering.

  • PDF

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

통전 중 산불에 노출된 가공송전선의 온도 및 장력 변화 거동 (Temperature and Load Change behavior of Overhead Conductor under loading current due to Forest Fire)

  • 김병걸;장용호;김상수;한세원
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.366-371
    • /
    • 2009
  • The authors have published several technical reports on the deterioration of conductor due to forest fire in series so far. This is because even we have been experiencing hundreds of forest fires every year, no systematic research on conductor which is very vulnerable to fire have been fulfilled. This paper describes the sag-tension behavior of conductor under loading current normally when only partial area of a long conductor is exposed to fire. Temperatures of Overhead Conductor were different with measurement position. When the partial area of conductor was heated up to $500^{\circ}C$, 20 % of permanent tension loss was observed. This results in the increase of sag of 1.5 m when span is 300 m. The other results will be presented in the text.

A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams

  • Ahmed, Ridha A.;Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.33-48
    • /
    • 2020
  • With the use of differential quadrature method (DQM), forced vibrations and resonance frequency analysis of functionally graded (FG) nano-size beams rested on elastic substrate have been studied utilizing a shear deformation refined beam theory which contains shear deformations influence needless of any correction coefficient. The nano-size beam is exposed to uniformly-type dynamical loads having partial length. The two parameters elastic substrate is consist of linear springs as well as shear coefficient. Gradation of each material property for nano-size beam has been defined in the context of Mori-Tanaka scheme. Governing equations for embedded refined FG nano-size beams exposed to dynamical load have been achieved by utilizing Eringen's nonlocal differential law and Hamilton's rule. Derived equations have solved via DQM based on simply supported-simply supported edge condition. It will be shown that forced vibrations properties and resonance frequency of embedded FG nano-size beam are prominently affected by material gradation, nonlocal field, substrate coefficients and load factors.

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

물-공기 히트펌프 시스템의 부분부하 난방운전 특성 (Performance Characteristics of Water-to-Air Heat Pump under Partial Load Heating Operation)

  • 조용;이남영;김용열;김대근;정응태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.170.1-170.1
    • /
    • 2010
  • Performance of water-to-air heat pump using raw water has been analyzed under part load heating operation in March, 2010. The water source heat pump of 30 RT was installed for 24 hours cooling and heating ventilation, and the gravity inflow water from Daechung dam is used as the heat source. The daily averaged water and air temperatures are $5.7^{\circ}C$ and $9.9^{\circ}C$ respectively, and the heat pump is operated under part load condition for 7.5 hours in 24 hours. The daily averaged heat pump COP calculated with heat transferred from the brine water is 2.49 and the monthly averaged COP is 2.25 in March. Based on the database of the California Energy Commission, the monthly averaged COPs of air source heat pumps installed in U.S.A. are 1.97 in March and 2.03 in April. Therefore it is confirmed again that the performance of the heat pump using raw water is better than that of air source heat pumps.

  • PDF