• Title/Summary/Keyword: Parthenogenetic

Search Result 173, Processing Time 0.029 seconds

Optimization of Electrofusion Condition for the Production of Korean Cattle Somatic Cell Nuclear Transfer Embryos

  • Kim, Se-Woong;Kim, Dae-Hwan;Jung, Yeon-Gil;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • This study was designed to determine the effect of electric field strength, duration and fusion buffer in fusion parameters on the rate of membrane fusion between the somatic cell and cytoplast for Korean cattle (HanWoo) somatic cell nuclear transfer (SCNT) procedure. Following electrofusion, effect of 5 or $10\;{\mu}M$ $Ca^{2+}$-ionophore of activation treatment on subsequent development was also evaluated. Cell fusion rates were significantly increased from 23.1% at 20 V/mm to 59.7% at 26 V/mm and 52.9% at 27 V/mm (p<0.05). Due to higher cytoplasmic membrane rupture or cellular lysis, overall efficiency was decreased when the strength was increased to 30 V/mm (18.5%) and 40 V/mm (6.3%) and the fusion rate was also decreased when the strength was at 25 V/mm or below. The optimal duration of electric stimulation was significantly higher in $25\;{\mu}s$ than 20 and $30\;{\mu}s$ (18.5% versus 9.3% and 6.3%, respectively, p<0.05). Two nonelectrolyte fusion buffers, Zimmermann's (0.28 M sucrose) and 0.28 M mannitol solution for cell fusion, were used for donor cell and ooplast fusion and the fusion rate was significantly higher in Zimmermann's cell fusion buffer than in 0.28 M mannitol (91.1% versus 48.4%, respectively, p<0.05). The cleavage and blastocyst formation rates of SCNT bovine embryos activated by $5\;{\mu}M$ $Ca^{2+}$-ionophore was significantly higher than the rates of the embryos activated with $10\;{\mu}M$ of $Ca^{2+}$-ionophore (70.0% versus 42.9% and 22.5% versus 14.3%, respectively; p<0.05). This result is the reverse to that of parthenotes which shows significantly higher cleavage and blastocyst rates in $10\;{\mu}M$ $Ca^{2+}$-ionophore than $5\;{\mu}M$ counterpart (65.6% versus 40.3% and 19.5% versus 9.7%, respectively; p<0.05). In conclusion, SCNT couplet fusion by single pulse of 26 V/mm for $25\;{\mu}s$ in Zimmermann's fusion buffer followed by artificial activation with $5\;{\mu}M$ $Ca^{2+}$-ionophore are suggested as optimal fusion and activation methods in Korean cattle SCNT protocol.

The Effect of Porcine Sperm Cytosolic Factor (SCF) on In Vitro Development of Porcine PA and NT Embryos

  • Shim, Joo-Hyun;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Oh, Keon-Bong;Yang, Boh-Suk;Jin, Dong-Il;Park, Jin-Ki;Im, Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.319-327
    • /
    • 2011
  • This study investigated whether the addition of porcine sperm cytosolic factor (SCF) at fusion/activation affects in vitro development of porcine parthenogenetic(PA) and nuclear transfer (NT) embryos. To determine the optimum concentration of SCF, control group of oocytes was activated with 0.3M mannitol (1.0 mM $CaCl_2{\cdot}2H_2O$), other three groups of oocytes were parthenogentically activated with the fusion medium (0.1mM $CaCl_2{\cdot}2H_2O$) supplemented with 100, 200 or 300 ${\mu}$g/ml SCF, respectively. Matured oocytes were activated with two electric pulses (DC) of 1.2 kv/cm for 30 ${\mu}$sec. The activated embryos were cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. Oocytes activated in the presence of SCF showed a significantly higher blastocyst rate than control (p<0.05). Apoptosis rate was significantly lower in 100 ${\mu}$g/ml SCF group than other groups (p<0.05). Cdc2 kinase activity in control and SCF treatment group of oocytes was determined using MESACUP cdc2 kinase assay kit at 1, 5, 10, 15, 30, 45 and 60 min after activation. Cdc2 kinase activity was significantly decreased (p<0.05) in SCF group than MII oocytes or control within 5 min. For NT embryo production, reconstructed oocytes were fused in the fusion medium supplemented with 0.1 mM $CaCl_2{\cdot}2H_2O$ (T1), 1.0 mM $CaCl_2{\cdot}2H_2O$ (T2) and 0.1 mM $CaCl_2{\cdot}2H_2O$ with 100 ${\mu}$g/ml SCF (T3). Fused embryos were cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. Developmental rate to blastocyst stage was significantly higher in T3 than other groups (23.0% vs. 13.5 to 15.2%) (p<0.05). Apoptosis rate was significantly lower in T3 than T1 or T2 (p<0.05). The relative abundance of Bax-${\alpha}$/Bcl-xl was significantly lower in in vivo or SCF group than that of control (p<0.05). Moreover, the expression of p53 and caspase3 mRNA was significantly lower in in vivo or SCF group than that of control (p<0.05). These results indicate that the addition of SCF at fusion/activation might improve in vitro development of porcine NT embryos through regulating cdc2 kinase level and expression of apoptosis related genes.

Use of a Xanthine-Xanthine Oxidase System on In Vitro Maturation and Fertilization in Pig

  • Sa, S.J.;Park, C.K.;Cheong, H.T.;Yang, B.K.;Kim, C.I.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.13-13
    • /
    • 2001
  • This study was undertaken to evaluate the effects of catalase using xanthine (X) - xanthine oxidase (XO) system on in vitro maturation and fertilization in pig. When follicular oocytes were cultured in maturation medium with X and/or XO, the maturation rates were not significantly different between in medium with and without catalase despite of different culture periods. However, significantly (P<0.05) higher maturation rates were obrained in culture with X-XO system. The rates of degenerated oocytes were increased with culture periods prolonged, and were significantly (P<0.05) higher in medium without than with catalase at 120 h of culture. On the other hand, the parthenogenetic oocytes were observed with high proportions at 72 h of culture, hut were not different in medium with and without catalase at various times of culture. In another experiment, the frozen-thawed boar spermatozoa treated with X-XO system for in vitro fertilization. The penetration rates were higher in medium with that than without catalase during the in vitro fertilization with, none (P<0.05), XO and X+XO. On the other hand, when sperm were treated with none, X, XO and X+XO, lipid peroxidation were higher in medium without that than with catalase. However, the changes in sperm penetration and lipid peroxidation showed opposite patterns. The sperm suspensions were also treated with X and/or XO for assay of sulfhydryl (-SH) group content. Under the above all conditions, sperm-SH group were higher detected In medium with that than without catalase. The activity of sperm binding to zona pellucida was also evaluated through binding to salt-stored porcine oocytes. In control group, sperm binding to zona pellucida were higher than in medium with X, XO and X+XO groups. No significant differences, however, were observed between medium with and without catalase. In conclusion, the exposure of follicular oocytes and spermatozoa to X-XO system may be caused stimulating in vitro maturation and fertilization in pig. This work was supported by grant No. 2000-1-22200-001-3 from the Basic Research Program of the Korea Science & Engineering Foundation.

  • PDF

Maximization of The Number of Follicular Oocytes Recovered from The Bovine Ovaries (소 난소로부터 회수난포란수의 극대화 방법)

  • 유형진;최승철;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 1993
  • A new technique was established to maximize the numbers of follicular oocytes recovered from the ovaries obtained at the slaughter house. And their further developmental capacity was demonstrated. There recovery techniques were used; aspiration (ASP, control), slicing (SLC) and slicing combining aspiration (ASP+SLC). Recovered oocytes were cultured in TCM 199+15% FCS+gonadotrophins in an atmosphere of 5% CO$_2$ in air at 39$^{\circ}C$ for 24 h. The nuclear maturation was detemined with chromo-some configuration by rapid staining. And cytoplasmic maturation was examined by the formation of female pronuclei with parthenogenetic activation of the matured oocyte after 18 h of co-culture with granulosa cell monolayer. Total 1,641 bovine follicular oocytes recovered from 245 ovaries. The number of oocytcs per ovary was 1.87 in ASP, 11.05 in SLC and 7.88 in ASP+SLC, respectively. SLC would yield 5.9 folds increase, compared with ASP. The rate of maturation were 92.9% in ASP, 79.1% in SLC and 71.7% in ASP+SLC, respectively. Although the maturation rate in ASP was the highest, metaphase II oocytes per ovary in SLC was 5 times higher than that of ASP. The rates of pronuclei formation upon ethanol activation were 75% in ASP, 67% in SLC and 62.5% in ASP+SLC, respectively. The results demonstrate that it should be possible to maximize the number of the follicular oocyte from the ovary for mass production of bovine embryos. Thus the established technique may provide efficient supply of bovine embryos for biochemical and molecular study of early bovine embryos.

  • PDF

Effects of FBS(Fetal Bovine Serum) and pFF(Porcine Follicular Fluid) on In Vitro Maturation and Development of Porcine Parthenogenetic and Nuclear Transfer Embryos

  • Moon, Hyo-Jin;Shim, Joo-Hyun;Hwang, In-Sun;Park, Mi-Rung;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Park, Choon-Keun;Im, Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • In this study, in vitro maturation system using fetal bovine serum (FBS) or porcine follicular fluid (pFF) was investigated to produce comparable oocytes to those derived from in vivo. Control group of oocytes was cultured in TCM 199 supplemented with 0.1% polyvinyl alcohol (PVA). Other three groups of oocytes were cultured in TCM 199 supplemented with 10% FBS, 10% pFF or 5% FBS + 5% pFF, respectively. After 44 h maturation, oocytes with the first polar body were activated with two electric pulses (DC) of 1.2 kv/cm for 30 ${\mu}sec$. Also, matured oocytes of four groups were reconstructed and fused. Reconstructed embryos were cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. The oocytes matured in the medium supplemented with FBS or/and pFF showed significantly higher maturation rates (64.0 vs. 73.9 to 85.2%). In PA embryos, cleavage rates (89.7 vs. 77.1 to 86.6%) and blastocysts rates (30.0 vs. 16.2 to 26.2%) were significantly higher in pFF group (p<0.05). In NT embryos, there was no difference among treatments in cleavage rate, but the blastocyst rates (28.5 vs. 15.5 to 24.6%) were significantly higher in pFF group (p<0.05). The apoptosis rate was significantly higher (p<0.05) in the control than other groups (10.8 vs. 4.9 to 8.2% for PA, 3.1 vs. 0.5 to 1.3% for NT). In order to select the comparable oocyte to in vivo oocytes, each group of oocytes was stained with Brilliant cresyl blue (BCB) after 42h maturation. The matured oocytes were separated according to color of cytoplasm; stained group (BCB+) and unstained group (BCB-). The oocytes matured in the presence of FBS or/and pFF showed significantly higher staining rates (70.3 to 72.7 vs. 35.1%) (p<0.05). To verify the fact that the supplementation of FBS or/and pFF can increase the maturation rates, cdc2 kinase activity, the catalytic subunit of MPF, was determined. The cdc2 kinase activity of the oocytes matured in the medium supplemented with FBS or/and pFF was significantly higher than control group (6.7 to 9.3 vs. 3.8). In conclusion, the supplementation of FBS or/and pFF can support in vitro maturation rate of porcine oocytes through the increment of cdc2 kinase activity level in the cytoplasm.

Production of Induced Gynogenetic Diploid Bagrid Catfish Leiocassis ussuriensis (Siluriformes) - I. Optimization of Treatment Condition for Diploid Gynogenesis (대농갱이 Leiocassis ussuriensis (Siluriformes) 자성발생성 이배체 생산 - I. 자성발생성 이배체 유도 처리 조건의 최적화)

  • Park, Sang-Yong;Lee, Yoon-A;Nam, Yoon-Kwon;Bang, In-Chul
    • Journal of Aquaculture
    • /
    • v.20 no.3
    • /
    • pp.184-189
    • /
    • 2007
  • Treatment conditions for the induced diploid gynogenesis, a maternal-exclusive form of artificial parthenogenetic reproduction, were optimized in bagrid catfish (Leiocassis ussuriensis, Siluriformes). Optimal amounts of ultraviolet (UV) irradiation for the genetic inactivation of spermatozoa in bagrid catfish and Pseudobagrus fulvidraco were proven to be ranged from 3,600 to 4,800 $ergs/mm^2$ based on the examination of viability of embryos and haploid incidence. Haploid embryos were restored to diploidy by preventing the extrusion of the second polar body using cold shock treatment. Thermal treatments (4 or $6^{\circ}C$ for 30, 40 or 50 min) were carried out 3, 5 or 7 min post insemination. Best scores for embryo viability (38.6% of total eggs taken) and incidence of normal diploidy (87.9% of hatched larvae) were observed at the embryo group treated at $4^{\circ}C$ for 40 min, 5 min after insemination. Restoration of gynogenetic diploidy was confirmed based on the absence of haploid syndrome, cell size and/or nucleolar organizing region (NOR) counts.

Effect of Treatment of In Vitro Matured Pig Oocytes with Calcium Ionophore on Monospermic Penetration In Vitro

  • Song, Xue-Xiong;Zhao, Xian-Mian;Han, Yi-Bing;Niwa, Koji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • The present study examined whether treatment of in vitro matured pig oocytes with calcium ionophore (A23187) could prevent polyspermic penetration in vitro. When oocytes cultured for maturation for 33, 36 or 44 h were subsequently treated with $50{\mu}M$ A23187 in medium with fetal calf serum (FCS) for 1, 2 and 3 h and then cultured for 12 h without spermatozoa, virtually no activation occurred. In the absence of FCS, however, 31-42, 45-49 and 56-64% of oocytes were activated, respectively. When oocytes treated with $50 {\mu}M$ A23187 in medium with FCS for 3 h were inseminated in vitro, the penetration rates (14-57%) were lower (p<0.01) with a higher (p<0.01) incidence (35-67%) of monospermy compared with untreated oocytes (69-80% penetration and 15-17% monospermy). However, sperm penetration was completely blocked in all oocytes treated with A23187 in the absence of FCS. When oocytes matured for 33 h were treated with different concentrations of A23187 for 3 h and inseminated in vitro, the penetration rate did not change but there was an increased incidence (p<0.05) of monospermy at $10-20{\mu}M$ and $2.5-5{\mu}M$ A23187 in the presence and absence of FCS, respectively, compared with at $0{\mu}M$ A23187. With these lower concentrations of A23187, treatment of oocytes for at least 60 and 30 min in the presence and absence of FCS, respectively, was required to increase the incidence of monospermy without reducing penetration rate. These results indicate that a high concentration ($50{\mu}M$) of A23187 in medium without FCS, but not in medium with FCS, stimulated in vitro matured pig oocytes to induce parthenogenetic activation and a complete block to sperm penetration in vitro. However, treatment of oocytes with lower concentrations of A23187 ( $10-20{\mu}M$ and $2.5-5{\mu}M$) both in the presence and absence of FCS maintained sperm penetration in vitro and increased the incidence of monospermy.

Effect of Catalase and/or Xanthine on In Vitro Maturation of Porcine Follicular Oocytes (돼지 난포난자의 체외성숙에 있어서 Catalase와 Xanthine의 영향)

  • Sa, S. J.;Park, C. K.;H. T. Cheong;B. K. Yang;Kim, C. I.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.3
    • /
    • pp.243-250
    • /
    • 2001
  • The objectives of the present study were to examine the relationship between catalase (0.1 mg/$m\ell$) and xanthine (5 mM) on in vitro maturation of porcine follicular oocytes. At 48 h after maturation, the proportions of oocytes matured to metaphase-II stage were significantly higher (P<0.05) in the medium with control (72%), catalase (73%) or catalase plus xanthine (70%) than of oocytes cultured with xanthine (54%). On the other hand, oocytes cultured in medium with catalase and/or xanthine for 30 h were not significantly different in maturation rates (6~l4%). At 36, 42 and 48 h after culture, however, the maturation rates were significantly (P<0.05) higher in medium with (49~70%) that than without (29~50%) catalase regardless of presence of xanthine. When the oocytes were cultured with periods prolonged in medium with and without xanthine, the maturation rates did increase with high proportions at 72 h of culture. No significant differences, however, were observed in maturation rates between groups with and without catalase. On the other hand, degenerated oocytes were increased with culture periods, the proportions was significantly (P<0.05) lower in medium with (28%) than without (47%) catalase at 120 h of culture. However, there were no significant difffrences between with and without catalase in medium added xanthine. The parthenogenetic oocytes were observed from 72 h after culture in medium with xanthine, but were no significant differences between with and without catalase. From these results, it is indicated that porcine oocytes nay respond to maturation stimulus by 72 h of culture in medium with catalase and xanthine and that parthenogenesis can be obtained with prolonged culture periods.

  • PDF

The Beneficial Effects of Ferulic Acid supplementation during In Vitro Maturation of Porcine Oocytes on Their Parthenogenetic Development

  • Lee, Kyung-Mi;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • Ferulic Acid (FA) is a metabolite of phenylalanine and tyrosine, a phenolic compound commonly found in fruits and vegetables. Several studies have shown that FA has various functions such as antioxidant effect, prevention of cell damage from irradiation, protection from cell damage caused by oxygen deficiency, anti-inflammatory action, anti-aging action, liver protective effect and anti-cancer action. In this study, we investigated the maturation rate, intracellular glutathione (GSH) and reactive oxygen species (ROS) of porcine oocytes by adding FA to the in vitro maturation (IVM) medium and examined subsequent embryonic developmental competence at 5% oxygen through parthenogenesis. There is no significant difference between the control group ($0{\mu}M$) and treatment groups ($5{\mu}M$, $10{\mu}M$, $20{\mu}M$) on maturation rates. Intracellular GSH levels in oocyte treated with $5{\mu}M$ of FA significantly increased (P < 0.05), and $20{\mu}M$ of FA revealed significant decrease (P < 0.05) in intracellular ROS levels compared with the control group. Oocytes treated with FA exhibited significantly higher cleavage rates (79.01% vs 89.19%, 92.20%, 90.89%, respectively) than the control group. Oocytes treated with $10{\mu}M$ showed significantly higher blastocyst formation rates (28.3% vs 40.3%, respectively) after PA than the control group. Total cell numbers in blastocyst of $10{\mu}M$ FA displayed significantly higher (39.4 vs 51.9, respectively) than the control group. In conclusion, these results suggested that treatment with FA during IVM improved the developmental potential of porcine embryos by increasing intracellular GSH synthesis and reducing ROS levels. Also, there was an improvement of cleavage rate, blastocyst formation and total cell numbers in blastocysts. It might be associated with Keap1-Nrf2 pathway as an antioxidant regulate pathway that plays a crucial role in determining the sensitivity of cells to oxidative damages by regulating the basal and inducible expression of enzymes which is related to detoxification and anti-oxidative effects, stress response enzymes and/or proteins and ABC transporters.

Effect of Electric Stimulation on Parthenogenesis of In Vitro Matured Oocytes from Korean Native Cows (한우 체외성숙란의 단위발생에 대한 전기자극의 효과)

  • 노규진;공일근;곽대오;이효정;최상용;박충생
    • Journal of Embryo Transfer
    • /
    • v.9 no.2
    • /
    • pp.145-152
    • /
    • 1994
  • The suitable electric stimulation is essential for activation and fusion of oocytes before or after nuclear transplantation The present study was undertaken to determine the optirnal condition for the parthenogenetic activation of in vitro rnatured(IVM) bovine oocytes by electric stimulation. Different direct current(DC) electric voltage of 1.0, 1.5 and 2.0 kV/cm and pulse duration of 30, 60 and 120 $\mu$sec were applied to the JVM nocytes in 0.3 M mannitol solution containing each 100 $\mu$M CaCl$_2$ and MgCl$_2$. IVM occytes at 24, 28 and 32 hours Post-maturation(hpm) were also electrically stimulated at 1.5 kV /cm, for 60 $\mu$ sec. The stimulated nocytes were then co-cultured in TCM-199 solution containing 10% fetal calf serum with bovine oviductal epithelial cells for 7~9 days in a 5% $CO_2$ incubator at 39$^{\circ}C$ ~ Their activation and in vitro development to morula and blastocyst were assessed under an inverted microscope. The higher activation rates 62.8 and 63.4% and in vitro de- velopment rates to morula and blastocyst 5.1 and 10.9% were shown in the oocytes stimulated at the voltage of 1.0 and 1.5 kV/cm than 2.0 kV/cm, respectively. No signifi- cantly(P<0.05) different activation rate was shown in JVM oocytes stimulated for 30, 60 and 120 $\mu$sec, but developmental rates to morula and blastocyst was significantly(P<0.05) higher in the oocytes stimulated for 30 $\mu$sec(6~3%) and 60 $\mu$sec(10~0%) than 120 $\mu$sec(0~ 0%). The aged oocytes at 28 and 30 hpm showed significantly(P<0.05) higher activation rates(72~7 and 79.7%) than the oocytes at 24 hpm(50~9%)~ Also, their developmental rates to morula and blastocyst were significantly(P<0.05) higher in the nocytes at 28(14.3%) and 32 hpm(15.9%) than 24 hpm(3.6%). From these results, it can be suggested that the optimal electric stimulation for IVM bovine occytes is a DC voltage between 1.0 and 1.5 kV/cm, pulse duration of 30 or 60 $\mu$sec, and the optimal age of IVM oocytes for electric activation is at 32 hpm.

  • PDF