• Title/Summary/Keyword: Part shrinkage

Search Result 201, Processing Time 0.021 seconds

Effects of Molecular Weight of Polyethylene Glycol on the Dimensional Stabilization of Wood (Polyethylene Glycol의 분자량(分子量)이 목재(木材)의 치수 안정화(安定化)에 미치는 영향(影響))

  • Cheon, Cheol;Oh, Joung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.14-21
    • /
    • 1985
  • This study was carried out in order to prevent the devaluation of wood itself and wood products causing by anisotropy, hygroscopicity, shrinkage and swelling - properties that wood itself only have, in order to improve utility of wood, by emphasizing the natural beautiful figures of wood, to develop the dimensional stabilization techniques of wood with PEG that it is a cheap, non-toxic and the impregnation treatment is not difficult, on the effects of PEG molecular weights (200, 400, 600, 1000, 1500, 2000, 4000, 6000) and species (Pinus densiflora S. et Z., Larix leptolepis Gordon., Cryptomeria japonica D. Don., Cornus controversa Hemsl., Quercus variabilis Blume., Prunus sargentii Rehder.). The results were as follows; 1) PEG loading showed the maximum value (137.22%, Pinus densiflora, in PEG 400), the others showed that relatively slow decrease. The lower specific gravity, the more polymer loading. 2) Bulking coefficient didn't particularly show the correlation with specific gravity, for the most part, indicated the maximum values in PEG 600, except that the bulking coefficient of Quercus variabilis distributed between the range of 12-18% in PEG 400-2000. In general, the bulking coefficient of hardwood was higher than that of softwood. 3) Although there was more or less an exception according to species, volumetric swelling reduction was the greatest in PEG 400. That is, its value of Cryptomeria japonica was the greatest value with 95.0%, the others indicated more than 80% except for Prunus sargentii, while volumetric swelling reduction was decreased less than 70% as the molecular weight increase more than 1000. 4) The relative effectiveness of hardwood with high specific gravity was outstandingly higher than softwood. In general, the relative effectiveness of low molecular weight PEG was superior to those of high molecular weight PEG except that Quercus variabilis showed more than 1.6 to the total molecular weight range, while it was no significant difference as the molecular weight increase more than 4000. 5) According to the analysis of the results mentioned above, the dimensional stabilization of hardwood was more effective than softwood. Although volumetric swelling reduction was the greatest at a molecular weight of 400. In the view of polymer loading, bulking coefficiency reduction of swelling and relative effectiveness, it is desirable to use the mixture of PEG of molecular weight in the range of 200-1500. To practical use, it is recommended to study about the effects on the mixed ratio on the bulking coefficient, reduction of swelling and relative effectiveness.

  • PDF