• 제목/요약/키워드: Part load factor

검색결과 167건 처리시간 0.025초

기초형식 및 뒤채움재 종류별 강성관용 하수관거의 안전율 (Safety Factor of Rigid Sewer Pipe by Different Types of Foundation and Backfill)

  • 이관호;김성겸
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.606-612
    • /
    • 2019
  • 도심지 도로하부에서 발생하는 지반침하 및 싱크홀의 주요 원인은 하수관로 기초 및 관로뒤채움재의 부적절한 다짐 등이다. 이로 인해 하수관거의 이음부 파손 및 접합 불량, 관의 파손 및 균열 등 많은 문제점이 발생하고 있다. 이를 해결하기 위해 하수관거 기초와 관련된 받침계수 및 굴착 깊이에 따른 안전율을 평가하였다. 강성관용 기초로는 쇄석기초, 버림 콘크리트 기초, 그리고 최근 새로 개발된 현장조립식 경량플라스틱 기초를 이용하였고, 뒤채움재는 현장발생토사(사질토 및 점성토), 현장발생토사를 재활용한 유동성뒤채움 등을 적용하였다. 굴착 깊이 및 하수관 기초별 안전율을 평가하기 위하여 하중 계수 및 받침계수 등을 고려한 설계하중을 평가하였다. 받침계수는 쇄석기초 0.377, 버림 콘크리트 기초($180^{\circ}$$120^{\circ}$) 0.243 및 0.220, 경량 플라스틱 기초와 유동성 뒤채움재는 0.231로 적용하였다. 전체적으로 쇄석기초 사용 시 안전율이 작게 나왔고, 받침각 $180^{\circ}$ 버림 콘크리트 기초 사용 시 안전율이 가장 크게 나타났다. 또한, 경량 플라스틱 기초와 유동성 뒤채움재의 조합을 이용할 경우 받침각 $120^{\circ}$ 버림 콘크리트 기초보다 안전율이 크게 나타났다. 이는 새로 개발된 재활용 경량 플라스틱 기초가 강성관의 또 다른 대안 기초로 활용이 가능함을 의미한다.

소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션 (Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System)

  • 조우진;이관수;김인규
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

Nonlinear shear strength of pre-stressed concrete beams

  • Rahai, Alireza;Shokoohfar, A.
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.441-458
    • /
    • 2012
  • The shear strength is an important factor in the design of prestressed concrete beams. Therefore, researchers have utilized various methods to determine the shear strength of these elements for the design purposes. To evaluate some of the proposed theoretical methods, numerous models of post-tensioned beams with or without vertical prestressing are selected and analyzed using the finite element method and assuming nonlinear behavior for the materials. In this regard the validity of modeling is evaluated based on some tests results. In the second part of the study two beam specimens are built and tested and their load-deformation curve and cracking pattern are studied. The analytical results consist of compressive strut slope and mid span load deflection are compared with some experimental results, and the results of some codes' formulas. Finally comparing the results of nonlinear analysis with the experimental values, a new formula is proposed for determining strut slopes in prestressed concrete beams.

종합병원 간호사의 근골격계질환 증상요인 및 관리방안 (Musculoskeletal Disorder Symptom Factors and Control Strategies in General Hospital Nurses)

  • 박정근
    • 한국산업보건학회지
    • /
    • 제24권3호
    • /
    • pp.371-382
    • /
    • 2014
  • Objectives: This study was undertaken in order to examine how musculoskeletal disorder(MSD) symptoms were affected by particular factors and then to explore control strategies to prevent MSDs in general hospital nurses. Materials: This, as part of a large study, was conducted using a set of information on literature review, questionnaire survey and focus group interview. It obtained prevalence and factors of MSD symptoms and examined how MSD symptoms were distributed and affected by the factors in nurses working at 15 general hospitals across Korea. The factors were personal factors, work organization, nursing tasks, physical factors and psychosocial factors. Results: A total of 501 nurses were determined as subjects. The highest MSD symptom prevalence was 61% for the shoulder, among body parts, followed by leg/feet(55%), low back(51%), neck(42%), wrist(38%), and elbow(21%). Prevalence for the whole body was 80%. Odds ratios ranged from 0.4 to 22.4 in logistic regression analyses. The symptoms were significantly attributed to factor variables such as body mass index, current health status, daily work time, nursing task, pooled-physical factors, ergonomic factors, work load, interpersonal conflict, and job insecurity. Conclusions: Two or more factor variables were significant, depending on body part, for MSD systems in the general hospital nurses. It was noticeable that physical factors, such as pooled-physical factors, ergonomic factors or work load, were selectively significant for MSD symptoms in all body parts, indicating that such information should be used for prevention of MSDs in the hospital sector.

굴삭기휠의 형상별 구조 강도에 대한 내구성 연구 (Durability Study on Structural Strength due to the Shape of Excavator Wheel)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.

3상 저항가열식 전기히터의 화재예방을 위한 결함 진단장치 (Fault Diagnosis Device for Fire Prevention of the Resistance Heating Type three-Phase Electric Heater)

  • 이문형;김찬오
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1669-1674
    • /
    • 2017
  • In this study, We have discussed the development of a diagnostic device to detect and prevent electrical fire due to the arc caused by contact failure and partial disconnection at the connection part of the three-phase electric heater wiring used in the industrial field. The arc caused by contact failure and partial disconnection at the connection part of the electric heater shows a change in the current effective value. Therefore, it is possible to determine whether there exists a defect by analyzing the current unbalance factor and the number of current fluctuations with the diagnostic apparatus. The three-phase unbalanced heater is considered to be capable of determining defects through periodic measurement and trend analysis of the current unbalance factor. It is also expected that this device can be used not only for electric heaters but also for detection of defects in wiring and connections of electrical equipment having a characteristic of constant load current.

모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널베어링의 마모 해석 - Part II: 경사진 축을 지지하는 두 저어널베어링의 마모해석 (Wear Analysis of Journal Bearings Operating in a Shaft During Motoring Start-up and Coast-down Cycles - Part II: Wear Analysis of two Journal Bearings Supporting a Misaligned Shaft)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.168-186
    • /
    • 2017
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings during the start-up and coast-down cycles of a motoring stripped-down single cylinder engine operating with a tilted shaft. In order to decide whether the lubrication state of a journal bearing is in the mixed-elasto-hydrodynamic lubrication regime, we utilize lift-off speed and MOFT (most oil film thickness) under mixed-elasto-hydrodynamic lubrication regime at the corresponding aligned shaft. We formulate an equation for the modified film thickness in a misaligned journal bearing considering the additional wear volume described in Part I of this study. For this, we use the calculation results of the degree of misalignment and tilting angle obtained after finding the eccentricities of the two bearings supporting the crankshaft of a single cylinder engine. In this Part II, we calculate the wear of journal bearings using the fractional film defect coefficient, the asperity load sharing factor, and the modified specific wear rate for the application of mixed-elasto-hydrodynamic lubrication regime. We show that the accumulated wear volume after turning the ignition switch on and off once, increases to ${\sigma}=39{\mu}m$ and then decreases from ${\sigma}=39{\mu}m$ with increasing in surface roughness.

트랙터 부착형 옥수수 수확기의 구조 안정성에 관한 실험적 연구 (Experimental Study on the Structural Safety of the Corn Harvester attached to a Tractor)

  • 신창섭;윤태영;최훤;김태한
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.24-29
    • /
    • 2020
  • In South Korea, agricultural mechanization has been carried out in paddy field, but not in the upland field during recent decades. Among crops such as root vegetables, leafy vegetables from upland field, corn is used as forage for livestock as well as food for men. The corn harvester needs to be developed to replace men's labor in rural area to follow the recent needs in the farm industry. The corn harvester is comprised of three parts such as cutting part, feeding part and pick-up part. The feeding part is so long for cut corns to be delivered from the cutting part to the pick-up part. Structurally, the load from the long moment arm is likely to be big. Thus, the setup to measure the stress on the duct of the feeding part was configured with the data acquisition system. The strain gages were attached on several points that seem to be loaded a lot comparatively. The stress was measured and the measured stresses were divided by the yield stress to get the safety factor. And then, we made sure the safety factors were above 1 on the all points. In conclusion, the feeding part of the corn harvester which convey the cut corn from the cutting part from the pick-up part can be regarded to be made safe structurally.

풍력발전기용 복합재 윈드터빈 블레이드의 구조해석 및 실험 (Structural Analysis and Test of Composite Wind Turbine Blade)

  • 정상훈;박지상;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.121-124
    • /
    • 2004
  • The purpose of this study is to define the optimized layer pattern of composite wind turbine blade by using a commercial FEM program and to perform the fatigue test of T-Bolt. FEM analysis is done by using a PATRAN and ABAQUS to get a information about stress distribution ,critical deformation shape and get a critical load factor in local buckling analysis. As a result of the linear and nonlinear structural analysis, layer pattern of blade was optimized. T-Bolt is a connecting part of wind turbine blade and rotor hub, therefore T-bolt is cirtical part of wind turbine blade. T-bolt fatigue test is conducted to get a information of life cycle of T-bolt. The test is done by using a hydraulic actuator system

  • PDF